Advertisement

Phase Transformation Modeling for Hypo Peritectic Steel in Continuous Cooling

Abstract

Phase change of steel during cooling affects the slab qualities in continuous casting. Especially, crack susceptibility of hypo peritectic steel is high because large volume shrinkage occurs by peritectic phase transformation during solidification and cooling. In continuous cooling, phase change is different from the behaviors under the equilibrium condition, such as undercooling and extend of peritectic reaction, etc. Therefore, we develop a new phase change model considering thermodynamics, empirical equations, and carbon diffusion in each phase to predict phase change behavior during continuous cooling. In this model, phase change of hypo peritectic steel comprises 5 stages until all phases become the γ phase. The velocities of the δ/γ interface and phase fractions during cooling are calculated according to cooling rate, undercooling of the γ phase, and carbon contents. The results show that if solidification ends by the δ phase during dTp, the γ phase is formed by massive transformation. On the contrary, if peritectic reaction starts with liquid, the γ phase is formed and grows by diffusional transformation. In latter case, massive transformation of remaining δ phase can occur with high undercooling or very fast cooling rates. This analysis shows that there are several different paths depending on carbon contents of hypo peritectic steels.

Graphic Abstract

Phase change of hypo peritectic steel.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    P. Lan, L. Li, Z. Tie, H. Tang, J. Zhang, Met. Mater. Int. 25, 1603–1615 (2019)

  2. 2.

    P. Lan, D.A. Nguyen, S.-Y. Lee, J.-W. Cho, Met. Mater. Int. 23, 568–575 (2017)

  3. 3.

    J. Xu, S. He, T. Wu, X. Long, Q. Wang, ISIJ Int. 52, 1856–1861 (2012)

  4. 4.

    D.M. Stefanescu, ISIJ Int. 46, 786–794 (2006)

  5. 5.

    H. Shibata, Y. Arai, M. Suzuki, T. Emi, Metall. Mater. Trans. B 31, 981–991 (2000)

  6. 6.

    H.W. Kerr, J. Cisse, G. Bolling, Acta Metall. 22, 677–686 (1974)

  7. 7.

    S. Griesser, C. Bernhard, R. Dippenaar, Acta Mater. 81, 111–120 (2014)

  8. 8.

    E.A. López, M.H. Trejo, J.J.R. Mondragón, M.J.C. Román, H.S. Tovar, ISIJ Int. 49, 851–858 (2009)

  9. 9.

    S.-C. Moon, R. Dippenaar, S.-H. Lee, in IOP conference series: materials science and engineering, (IOP Publishing, 2012), p. 012061

  10. 10.

    M. Yoshiya, K. Nakajima, M. Watanabe, N. Ueshima, T. Nagira, H. Yasuda, Mater. Trans. 56, 1461–1466 (2015)

  11. 11.

    H. Yasuda, T. Nagira, M. Yoshiya, A. Sugiyama, N. Nakatsuka, M. Kiire, M. Uesugi, K. Uesugi, K. Umetani, K. Kajiwara, in IOP conference series: materials science and engineering, (IOP Publishing, 2012), p. 012036

  12. 12.

    M. Suzuki, Y. Yamaoka, Mater. Trans. 44, 836–844 (2003)

  13. 13.

    H. Mizukami, A. Yamanaka, T. Watanabe, ISIJ Int. 42, 964–973 (2002)

  14. 14.

    Y.-M. Won, B.G. Thomas, Metall. Mater. Trans. A 32, 1755–1767 (2001)

  15. 15.

    M.H. Trejo, E.A. Lopez, J.J.R. Mondragon, M.J.C. Roman, H.S. Tovar, Met. Mater. Int. 16, 731–737 (2010)

  16. 16.

    D. Phelan, M. Reid, R. Dippenaar, Metall. Mater. Trans. A 37, 985–994 (2006)

  17. 17.

    Y. Ueshima, S. Mizoguchi, T. Matsumiya, H. Kajioka, Metall. Mater. Trans. B 17, 845–859 (1986)

  18. 18.

    N. El-Kaddah, J. Szekely, G. Carlsson, Metall. Trans. B 15, 633–640 (1984)

  19. 19.

    J.J.R. Mondragón, M.H. Trejo, M.J.C. Román, ISIJ Int. 48, 454–460 (2008)

  20. 20.

    C. Cicutti, R. Boeri, Steel Res. Int. 77, 194–201 (2006)

  21. 21.

    D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, (Revised Reprint) (CRC Press, Boca Raton, 2009)

  22. 22.

    M. Onink, C. Brakman, F. Tichelaar, E. Mittemeijer, S. Van der Zwaag, J. Root, N. Konyer, Scr. Metall. Mater. 29, 1011–1016 (1993)

  23. 23.

    M. Yoshiya, M. Sato, M. Watanabe, K. Nakajima, T. Yokoi, N. Ueshima, T. Nagira, H. Yasuda, in IOP conference series: materials science and engineering, (IOP Publishing, 2015), p. 012049

  24. 24.

    R.B. Bird, Appl. Mech. Rev. 55, R1–R4 (2002)

  25. 25.

    M. Yoshiya, M. Watanabe, K. Nakajima, N. Ueshima, K. Hashimoto, T. Nagira, H. Yasuda, Mater. Trans. 56, 1467-1474 (2015)

  26. 26.

    S.C. Moon, R. Dippenaar and S.-Y. Kim, in AISTech conference

Download references

Author information

Correspondence to Kyung-woo Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jo, J., Yi, K. Phase Transformation Modeling for Hypo Peritectic Steel in Continuous Cooling. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-019-00593-9

Download citation

Keywords

  • Hypo peritectic steel
  • Modeling
  • Phase transformation
  • Continuous cooling