Advertisement

Microstructure and Tensile Properties of Mg–5Zn Alloy Containing Ca

  • Elaheh Maleki
  • Farzad ShahriEmail author
  • Masoud Emamy
Article
  • 16 Downloads

Abstract

The present study aimed at investigating the effect of Ca (0–3 wt%) on the microstructure and tensile properties of as-cast and as-extruded Mg–Zn alloy, in which tensile tests, X-ray diffraction, SEM, EDX and texture analysis were used to evaluate these features. Based on the results obtained, it is shown that the average grain size decreased from 305 to 84 μm by adding 3 wt% Ca to the as-cast Mg–Zn alloy. XRD and SEM results reveal that the dominant second phase in the presence of Ca is Ca2Mg6Zn3 which is formed continuously between dendrite arms spacing. It has been observed that the addition of 0.1 wt% Ca, significantly enhanced both UTS and elongation of as-cast alloy. It is found that the size of DRXed grains decreases with the increase of Ca (4 μm with 3 wt% Ca addition) after hot-extrusion. Further, it has been observed that Ultimate tensile strength (UTS) and elongation values of extruded alloys containing Ca are enhanced and the best result is obtained for Mg–5Zn–0.1Ca sample. Ultimate tensile strength (UTS) of 351 MPa and elongation percentage of 24% are obtained for Mg–5Zn–0.1Ca extruded alloy.

Graphic Abstract

Keywords

Magnesium alloys Hot extrusion Microstructures Tensile properties Texture 

Notes

Acknowledgements

The authors of this paper would thank Iran University of Industries and Mines for financial support and University of Tehran for technical support.

References

  1. 1.
    H.F. Sun, C.J. Li, W.B. Fang, J. Mater. Process. Technol. 229, 633 (2016)CrossRefGoogle Scholar
  2. 2.
    P.D. Caton, Mater. Des. 12, 309 (1991)CrossRefGoogle Scholar
  3. 3.
    J. Luo, H. Yan, N. Zheng, R.S. Chen, Acta Metall. Sin. Engl. Lett. 29, 205 (2016)CrossRefGoogle Scholar
  4. 4.
    Q. Kang, H. Jiang, Y. Zhang, Z. Xu, H. Li, Z. Xia, J. Alloys Compd. 742, 1019 (2018)CrossRefGoogle Scholar
  5. 5.
    S.A. Torbati-Sarraf, S. Sabbaghianrad, T.G. Langdon, Adv. Eng. Mater. 20, 1700703 (2018).  https://doi.org/10.1002/adem.201700703 CrossRefGoogle Scholar
  6. 6.
    K. Kubota, M. Mabuchi, K. Higashi, J. Mater. Sci. 34, 2255 (1999)CrossRefGoogle Scholar
  7. 7.
    Q.D. Wang, Y.J. Chen, J.B. Lin, L.J. Zhang, C.Q. Zhai, Mater. Lett. 61, 4599 (2007)CrossRefGoogle Scholar
  8. 8.
    Y. Du, M. Zheng, B. Jiang, Vacuum 151, 221 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Yuasa, N. Miyazawa, M. Hayashi, M. Mabuchi, Y. Chino, Acta Mater. 83, 294 (2015)CrossRefGoogle Scholar
  10. 10.
    C.J. Bettles, M.A. Gibson, K. Venkatesan, Scr. Mater. 51, 193 (2004)CrossRefGoogle Scholar
  11. 11.
    Y.Z. Du, X.G. Qiao, M.Y. Zheng, D.B. Wang, K. Wu, I.S. Golovin, Mater. Des. 98, 285 (2016)CrossRefGoogle Scholar
  12. 12.
    B. Langelier, A.M. Nasiri, S.Y. Lee, M.A. Gharghouri, S. Esmaeili, Mater. Sci. Eng. A 620, 76 (2014)CrossRefGoogle Scholar
  13. 13.
    L. Geng, B.P. Zhang, A.B. Li, C.C. Dong, Mater. Lett. 63, 557 (2009)CrossRefGoogle Scholar
  14. 14.
    Y. Du, M. Zheng, X. Qiao, D. Wang, W. Peng, K. Wu, B. Jiang, Mater. Sci. Eng. A 656, 67 (2016)CrossRefGoogle Scholar
  15. 15.
    C.D. Yim, B.S. You, R.S. Jang, S.G. Lim, J. Mater. Sci. 41, 2347 (2006)CrossRefGoogle Scholar
  16. 16.
    L. Han, H. Hu, D.O. Northwood, N. Li, Mater. Sci. Eng. A 473, 16 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Farahany, H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul Kadir, A.F. Lotfabadi, A. Ourdjini, Thermochim Acta. 527, 180 (2012)CrossRefGoogle Scholar
  18. 18.
    T.V. Larionova, W.-W. Park, B.-S. You, Scr. Mater. 45, 7 (2001)CrossRefGoogle Scholar
  19. 19.
    G. Levi, S. Avraham, A. Zilberov, M. Bamberger, Acta Mater. 54, 523 (2006)CrossRefGoogle Scholar
  20. 20.
    J. Bohlen, J. Wendt, M. Nienaber, K.U. Kainer, L. Stutz, D. Letzig, Mater. Charact. 101, 144 (2015)CrossRefGoogle Scholar
  21. 21.
    B.P. Zhang, L. Geng, L.J. Huang, X.X. Zhang, C.C. Dong, Scr. Mater. 63, 1024 (2010)CrossRefGoogle Scholar
  22. 22.
    T. Wang, L. Jiang, R.K. Mishra, J.J. Jonas, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45, 4698 (2014)CrossRefGoogle Scholar
  23. 23.
    N. Stanford, Mater. Sci. Eng. A 528, 314 (2010)CrossRefGoogle Scholar
  24. 24.
    M. Hradilová, F. Montheillet, A. Fraczkiewicz, C. Desrayaud, P. Lejček, Mater. Sci. Eng. A 580, 217 (2013)CrossRefGoogle Scholar
  25. 25.
    T. Homma, C.L. Mendis, K. Hono, S. Kamado, Mater. Sci. Eng. A 527, 2356 (2010)CrossRefGoogle Scholar
  26. 26.
    T. Al-Samman, G. Gottstein, Mater. Sci. Eng. A 490, 411 (2008)CrossRefGoogle Scholar
  27. 27.
    Y.B. Zuo, X. Fu, D. Mou, Q.F. Zhu, L. Li, J.Z. Cui, Mater. Res. Innov. 19, S194 (2015)CrossRefGoogle Scholar
  28. 28.
    D.W. Kim, B.C. Suh, M.S. Shim, J.H. Bae, D.H. Kim, N.J. Kim, Metall. Mater. Trans. A 44, 2950 (2013)CrossRefGoogle Scholar
  29. 29.
    S.W. Xu, S. Kamado, T. Honma, Scr. Mater. 63, 293 (2010)CrossRefGoogle Scholar
  30. 30.
    Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, J.F. Nie, Acta Mater. 105, 479 (2016)CrossRefGoogle Scholar
  31. 31.
    H. Pan, Y. Ren, H. Fu, H. Zhao, L. Wang, X. Meng, G. Qin, J. Alloys Compd. 663, 321 (2016)CrossRefGoogle Scholar
  32. 32.
    D. Guan, X. Liu, J. Gao, L. Ma, B. Wynne, W.M. Rainforth, J. Alloys Compd. 774, 556 (2019)CrossRefGoogle Scholar
  33. 33.
    F. Guo, L. Jiang, M. Yang, Y. Ma, Y. Deng, D. Zhang, F. Pan, Adv. Eng. Mater. 21, 1800920 (2019).  https://doi.org/10.1002/adem.201800920 CrossRefGoogle Scholar
  34. 34.
    J.Y. Lee, Y.S. Yun, W.T. Kim, D.H. Kim, Met. Mater. Int. 20, 885 (2014)CrossRefGoogle Scholar
  35. 35.
    S. Liu, L. Kang, H. Han, Z. Wang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 21, 45 (2006)CrossRefGoogle Scholar
  36. 36.
    M. Easton, D. St John, Metall. Mater. Trans. A 36, 1911 (2005)CrossRefGoogle Scholar
  37. 37.
    Y.C. Lee, A.K. Dahle, D.H. St John, in Essential Readings in Magnesium Technology, ed. by S.N. Mathaudhu, A.A. Luo, N.R. Neelameggham, E.A. Nyberg, W.H. Sillekens (Springer, Cham, 2016), p. 247CrossRefGoogle Scholar
  38. 38.
    M.E. Glicksman, Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts (Springer, Berlin, 2010)Google Scholar
  39. 39.
    P. Ghosh, M. Mezbahul-Islam, M. Medraj, CALPHAD Comput. Coupling Phase Diagr Thermochem. 36, 28 (2012)CrossRefGoogle Scholar
  40. 40.
    S. Cai, T. Lei, N. Li, F. Feng, Mater. Sci. Eng. C 32, 2570 (2012)CrossRefGoogle Scholar
  41. 41.
    D.K. Xu, E.H. Han, Prog. Nat. Sci. Mater. Int. 22, 364 (2012)CrossRefGoogle Scholar
  42. 42.
    N. El Mahallawy, A. Ahmed Diaa, M. Akdesir, H. Palkowski, Materwiss. Werksttech. 47, 37 (2016)CrossRefGoogle Scholar
  43. 43.
    Y.Z. Du, M.Y. Zheng, C. Xu, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, X.Y. Lv, Mater. Sci. Eng. A 576, 6 (2013)CrossRefGoogle Scholar
  44. 44.
    R.K. Mishra, A.K. Gupta, P. Rao Rama, A.K. Sachdev, V. Kumar, A.A. Luo, Scr. Mater. 59, 562 (2008).  https://doi.org/10.1016/j.scriptamat.2008.05.019 CrossRefGoogle Scholar
  45. 45.
    H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, S. Farahany, Corros. Sci. 64, 184 (2012)CrossRefGoogle Scholar
  46. 46.
    K.P. Rao, Y.V.R.K. Prasad, C. Dharmendra, K. Suresh, N. Hort, H. Dieringa, Adv. Eng. Mater. 20, 1701102 (2018)CrossRefGoogle Scholar
  47. 47.
    N.V. Ravi Kumar, J.J. Blandin, C. Desrayaud, F. Montheillet, M. Suéry, Mater. Sci. Eng. A 359, 150 (2003)CrossRefGoogle Scholar
  48. 48.
    Z. Yang, Y.C. Guo, J.P. Li, F. He, F. Xia, M.X. Liang, Mater. Sci. Eng. A 485, 487 (2008)CrossRefGoogle Scholar
  49. 49.
    Y. Takigawa, M. Honda, T. Uesugi, K. Higashi, Mater. Trans. 49, 1979 (2008)CrossRefGoogle Scholar
  50. 50.
    B. Zhang, Y. Wang, L. Geng, C. Lu, Mater. Sci. Eng. A 539, 56 (2012)CrossRefGoogle Scholar
  51. 51.
    A.K. Mukherjee, in Materials Science and Technology, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (Wiley, New York, 2006).  https://doi.org/10.1002/9783527603978.mst0056 CrossRefGoogle Scholar
  52. 52.
    C. Gandhi, R. Raj, Acta Metall. Mater. 39, 679 (1991)CrossRefGoogle Scholar
  53. 53.
    S. Mostafapoor, M. Malekan, M. Emamy, J. Therm. Anal. Calorim. 134, 1457 (2018)CrossRefGoogle Scholar
  54. 54.
    S. Mostafapoor, M. Malekan, M. Emamy, J. Therm. Anal. Calorim. 127, 1941 (2017)CrossRefGoogle Scholar
  55. 55.
    S. Mosleh, M. Emamy, H. Majdi, Proc. Mater. Sci. 11, 79 (2015)CrossRefGoogle Scholar
  56. 56.
    S. Ghanaraja, D.J. Dileep Kumar, K.S. Ravikumar, B.M. Madhusudan, Mech. Mater. 813, 84 (2015)CrossRefGoogle Scholar
  57. 57.
    N. Stanford, M.R. Barnett, Mater. Sci. Eng. A 496, 399 (2008)CrossRefGoogle Scholar
  58. 58.
    N. Stanford, Mater. Sci. Eng. A 527, 2669 (2010)CrossRefGoogle Scholar
  59. 59.
    A. Datta, U.V. Waghmare, U. Ramamurty, Acta Mater. 56, 2531 (2008)CrossRefGoogle Scholar
  60. 60.
    R.P. De Siqueira, H.R.Z. Sandim, D. Raabe, Metall. Mater. Trans. A 44, 469 (2013)CrossRefGoogle Scholar
  61. 61.
    Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, J.F. Nie, Scr. Mater. 108, 6 (2015)CrossRefGoogle Scholar
  62. 62.
    X.H. Chen, H. Yan, X.P. Jie, Int. J. Cast Met. Res. 28, 151 (2014)CrossRefGoogle Scholar
  63. 63.
    S. Candan, M. Unal, E. Koc, Y. Turen, E. Candan, J. Alloys Compd. 509, 1958 (2011)CrossRefGoogle Scholar
  64. 64.
    Z. Wang, M. Gao, H. Tang, X. Zeng, Mater. Charact. 62, 943 (2011)CrossRefGoogle Scholar
  65. 65.
    H.A. Patel, D.L. Chen, S.D. Bhole, K. Sadayappan, J. Alloys Compd. 496, 140 (2010)CrossRefGoogle Scholar
  66. 66.
    S.T. Niknejad, L. Liu, T. Nguyen, M.Y. Lee, S. Esmaeili, N.Y. Zhou, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 3747 (2013)CrossRefGoogle Scholar
  67. 67.
    A. Bahrami, A. Razaghian, M. Emami, H.R. Jafari Nodooshan, G.S. Mousav, Key Eng. Mater. 471, 1171 (2011).  https://doi.org/10.4028/www.scientific.net/KEM.471-472.1171 CrossRefGoogle Scholar
  68. 68.
    J.L. Li, Y.Q. Ma, R.S. Chen, W. Ke, Mater. Sci. Forum 747, 390 (2013)CrossRefGoogle Scholar
  69. 69.
    G.E. Dieter, Mechanical Metallurgy, vol. 3 (McGraw-Hill, New York, 2011)Google Scholar
  70. 70.
    J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, S.R. Agnew, Acta Mater. 55, 2101 (2007)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Metallurgy and Material EngineeringIran University of Industries and MinesTehranIran
  2. 2.Department of Advanced Materials and Renewable EnergiesIranian Research Organization for Science and Technology (IROST)TehranIran
  3. 3.School of Metallurgy and MaterialsUniversity of TehranTehranIran

Personalised recommendations