Strong Cube Texture Formation in Heavily Cold-Rolled Ni8W/Ni12W/Ni8W Composite Alloy Substrates Used in YBCO Coated Conductors

  • Yaotang Ji
  • Hongli SuoEmail author
  • ZiLi Zhang
  • Lin Ma
  • Jiazhi Li
  • Chengxi Zhang
  • Xingyu Wu
  • Shaheen Kausar
  • Jin Cui
  • Min Liu
  • Yi Wang
  • Qiuliang Wang


Three types of Ni8W/Ni12W/Ni8W composite substrates with strong cube texture, high yield strength, and low magnetization were produced by heavy cold rolling and annealing processes. The three types of composite substrates have the same thickness, but the ratios of thickness between Ni–8 at%W and Ni–12 at%W layer are different. The contents of tungsten exceed 9.3 at%, 10 at%, and 10.3 at% in the three types of obtained substrates. The presence of Ni alloys with higher W content in the Ni–12 at%W of the three composite substrates strongly enhanced the mechanical properties with about 290, 300 and 315 MPa respectively, and decreased the ferromagnetic behavior of the whole substrates. Additionally, it was found that an area that enhances cubic nucleation and growth in the Ni8W layer of composite substrates.

Graphic Abstract


Multilayer structure Texture Strength Magnetization 



This work is financially supported by the National Natural Science Foundation of China (51571002, 51777205,11745005 and 51702316), by the General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China (KM201810005010), by the Beijing Municipal Natural Science Foundation (2172008), by the Evaluation Research for the Performance of MgB2 Tapes (GH-201809CG005) and by 211 Program of Beijing City and Beijing University of Technology, by the Program of Top Disciplines Construction in Beijing (PXM2019_014204_500031).


  1. 1.
    A.P. Malozemoff, Phys. C 530, 65 (2016)CrossRefGoogle Scholar
  2. 2.
    N.M. Strickland, S.C. Wimbush, M.W. Rupich, N.J. Long, IEEE Trans. Appl. Supercond. 29, 1 (2019)CrossRefGoogle Scholar
  3. 3.
    H. Rijckaert, G. Pollefeyt, M. Sieger, J. Hanisch, J. Bennewitz, K. De Keukeleere, J. De Roo, R. Huhne, M. Backer, P. Paturi, H. Huhtinen, M. Hemgesberg, I. Van Driessche, Chem. Mater. 29, 6104 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Rijckaert, J. De Roo, M. Van Zele, S. Banerjee, H. Huhtinen, P. Paturi, J. Bennewitz, S.J.L. Billinge, M. Backer, K. De Buysser, I. Van Driessche, Materials 11, 1 (2018)CrossRefGoogle Scholar
  5. 5.
    M. Lao, P. Pahlke, M. Sieger, M. Falter, M. Backer, J. Hanisch, R. Huhne, M. Eisterer, Supercond. Sci. Tech. 32, 1 (2019)Google Scholar
  6. 6.
    F. Gomory, M. Vojenciak, M. Solovyov, L. Frolek, J. Souc, E. Seiler, M. Bauer, M. Falter, Supercond. Sci. Tech. 30, 1 (2017)Google Scholar
  7. 7.
    M.W. Rupich, X.P. Li, S. Sathyamurthy, C.L.H. Thieme, K. DeMoranville, J. Gannon, S. Fleshler, IEEE. T. Appl. Supercond. 23, 6601205 (2013)CrossRefGoogle Scholar
  8. 8.
    V.S. Sarma, J. Eickemeyer, A. Singh, L. Schultz, B. Holzapfel, Acta Mater. 51, 4919 (2003)CrossRefGoogle Scholar
  9. 9.
    H.L. Suo, Y. Zhao, M. Liu, L. Ma, IEEE Trans Appl. Supercond. 17, 3420 (2007)CrossRefGoogle Scholar
  10. 10.
    H.L. Suo, Y. Zhao, M. Liu, Y.X. Zhang, D. He, L. Ma, Y. Ji, M.L. Zhou, Acta Mater. 56, 23 (2008)CrossRefGoogle Scholar
  11. 11.
    H.L. Suo, M.M. Gao, Y. Zhao, Y.H. Zhu, IEEE Trans Appl. Supercond. 20, 1569 (2010)CrossRefGoogle Scholar
  12. 12.
    V.S. Sarma, B.D. Boer, J. Eickemeyer, B. Holzapfel, Scrip. Mater. 48, 1167 (2003)CrossRefGoogle Scholar
  13. 13.
    V.S. Sarma, B.D. Boer, J. Eickemeyer, B. Holzapfel, Acta Mater. 51, 3769 (2003)CrossRefGoogle Scholar
  14. 14.
    M. Liu, H.L. Suo, Y. Zhao, D. He, Y.X. Zhang, L. Ma, R.F. Fan, M.L. Zhou, Scrip. Mater. 56, 129 (2007)CrossRefGoogle Scholar
  15. 15.
    Y. Zhao, H.L. Suo, M. Liu, D. He, Y.X. Zhang, L. Ma, M.L. Zhou, Acta Mater. 55, 2609 (2007)CrossRefGoogle Scholar
  16. 16.
    Y. Zhao, H.L. Suo, Y.H. Zhu, M. Liu, D. He, S. Ye, L. Ma, R.F. Fan, Y. Ji, M.L. Zhou, Supercond. Sci. Tech. 21, 72 (2008)Google Scholar
  17. 17.
    V.S. Sarma, J. Eickemeyer, L. Schultz, B. Holzapfel, Scrip. Mater. 50, 953 (2004)CrossRefGoogle Scholar
  18. 18.
    D.M. Liu, F. Hao, M.J. Li, Y.C. Hu, F. Gao, M.L. Zhou, Mater. Sci. Tech. 21, 1387 (2005)CrossRefGoogle Scholar
  19. 19.
    A.O. Ijaduola, J.R. Thompson, A. Goyal, C.L.H. Thieme, K. Marken, Phys. C 403, 163 (2004)CrossRefGoogle Scholar
  20. 20.
    D. Yu, H.L. Suo, J. Liu, L. Ma, J. Cui, Y.T. Ji, S. Kausar, M. Liu, Y. Wang, J. Mater. Sci. 53, 15298 (2018)CrossRefGoogle Scholar
  21. 21.
    H.R. Kerchner, D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, M. Paranthaman, D.F. Lee, Appl. Phys. Lett. 71, 2029 (1997)CrossRefGoogle Scholar
  22. 22.
    A. Goyal, M.P. Paranthaman, U. Schoop, MRS Bull. 29, 552 (2004)CrossRefGoogle Scholar
  23. 23.
    L.X. Peng, X.W. Li, Z.J. Fan, C.L. Jiang, P. Zhou, X.C. Lai, Mater. Charact. 126, 35 (2017)CrossRefGoogle Scholar
  24. 24.
    X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii, J. Mater. Sci. Technol. 35, 1412 (2019)CrossRefGoogle Scholar
  25. 25.
    H.L. Yang, S. Kano, L.J. Chai, J.J. Shen, Z.S. Zhao, J. McGrady, Z.G. Duan, H. Abe, J. Alloys Compd. 782, 659 (2019)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina
  2. 2.Institute of Electrical EngineeringChinese Academy of SciencesBeijingChina
  3. 3.Department of PhysicsUniversity of PeshawarPeshawarPakistan

Personalised recommendations