Modified Mechanical Surface Treatment for Optimized Fatigue Performance of Martensitic Stainless Steel AISI 420

  • Sai-yan Primee
  • Patiphan JuijermEmail author


Mechanical surface treatments, deep rolling or shot peening can enhance the fatigue performance of metallic materials because near-surface compressive residual stresses and work hardening states can inhibit or retard crack initiation and propagation. Thus, the stability of compressive residual stresses and work hardening states during fatigue is very important. However, generated compressive residual stresses and work hardening layers can be relaxed because of dislocation movements, rearrangements and annihilations. The strain ageing concept is one of the ways to pin or obstruct dislocations by solute atoms (called the Cottrell cloud) as a consequence of high stability of near-surface residual stresses and work hardening states. In this research, the conventional deep rolling and its modifications, high temperature deep rolling and deep rolling followed by appropriate annealing were performed on martensitic stainless steel AISI 420. Fatigue tests were performed using a rotary bending fatigue machine to evaluate fatigue performance as well as the strain ageing effects. It was found that the conventional deep rolling could enhance the fatigue performance through generated compressive residual stresses and work hardening layers at the surface, and near-surface regions. The modified deep rolled (high temperature deep rolling and deep rolling followed by annealing) conditions exhibited a greater fatigue lifetime and performance than those of the conventional deep rolling, although some residual stress and work hardening relaxations were observed after the modified deep rolling processes.

Graphic Abstract


Deep rolling Fatigue Residual stress Stainless steel Strain ageing 



The authors would like to gratefully thank the National Metal and Materials Technology Center (MTEC) and Defence Technology Institute (Public Organization), Thailand, for their financial support. Thanks are due to P. Jansawat and T. Nimitbunchar for their support of some experiments.


  1. 1.
    H. Chandler, Heat Treater’s Guide: Practices and Procedures for Irons and Steels (ASM International, Ohio, 1995)Google Scholar
  2. 2.
    V. Schulze, Modern Mechanical Surface Treatment: States, Stability, Effects (Wiley-VCH Verlag GmbH, Weinheim, 2006)Google Scholar
  3. 3.
    D. Löhe, O. Vöhringer, Stability of residual stresses. In: Totten G, Howes M, Inoue T (eds.) Handbook of Residual Stress and Deformation of Steel (ASM International, Ohio, 2002), pp. 54–69Google Scholar
  4. 4.
    R. Menig, V. Schulze, O. Vöhringer, Mater. Sci. Eng. A Struct. 335, 198–206 (2002)CrossRefGoogle Scholar
  5. 5.
    A. Medvedeva, J. Bergström, S. Gunnarsson, P. Krakhmalev, Mater. Sci. Eng. A Struct. 528, 1773–1779 (2011)CrossRefGoogle Scholar
  6. 6.
    L. Xie, C. Jiang, V. Ji, Mater. Sci. Eng. A. Struct. 528, 6478–6483 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Fu, C. Jiang, Mater. Des. 56, 1034–1038 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Holzapfel, V. Schulze, O. Vöhringer, E. Macherauch, Mater. Sci. Eng. A. Struct. 248, 9–18 (1998)CrossRefGoogle Scholar
  9. 9.
    I. Nikitin, I. Altenberger, H.J. Maier, B. Scholtes, Mater. Sci. Eng. A Struct. 403, 318–327 (2005)CrossRefGoogle Scholar
  10. 10.
    R.C. McClung, Fatigue Fract. Eng. M 30, 173–205 (2007)CrossRefGoogle Scholar
  11. 11.
    I. Nikitin, M. Besel, Scr. Mater. 58, 239–242 (2008)CrossRefGoogle Scholar
  12. 12.
    B.X. Feng, X.N. Mao, G.J. Yang, L.L. Yu, X.D. Wu, Mater. Sci. Eng. A Struct. 512, 105–108 (2009)CrossRefGoogle Scholar
  13. 13.
    R. John, D.J. Buchanan, M.J. Caton, S.K. Jha, Procedia Eng. 2, 1887–1893 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Gündüz, Mater. Sci. Eng. A Struct. 486, 63–71 (2008)CrossRefGoogle Scholar
  15. 15.
    T. Waterschoot, B.C. De Cooman, A.K. De, S. Vandeputte, Metall. Mater. Trans. A 34, 781–791 (2003)CrossRefGoogle Scholar
  16. 16.
    G.R. Leverant, B.S. Langer, A. Yuen, S.W. Hopkins, Metall. Trans. A 10, 251–257 (1979)CrossRefGoogle Scholar
  17. 17.
    E.R. de Rios, A. Walley, M.T. Milan, G. Hammersley, Int. J. Fatigue 17, 493–499 (1995)CrossRefGoogle Scholar
  18. 18.
    J.D. Almer, J.B. Cohen, B. Moran, Mater. Sci. Eng. A Struct. 284, 268–279 (2000)CrossRefGoogle Scholar
  19. 19.
    M.A.S. Torres, H.J.C. Voorwald, Int. J. Fatigue 24, 877–886 (2002)CrossRefGoogle Scholar
  20. 20.
    K. Dalaei, B. Karlsson, L.E. Svensson, Mater. Sci. Eng. A Struct. 528, 1008–1015 (2011)CrossRefGoogle Scholar
  21. 21.
    K. Zhan, C.H. Jiang, V. Ji, Mater. Trans. 53, 1578–1581 (2012)CrossRefGoogle Scholar
  22. 22.
    X.D. Ren, W.F. Zhou, S.D. Xu, S.Q. Yuan, N.F. Ren, Y. Wang, Q.B. Zhan, Opt. Laser Technol. 74, 29–35 (2015)CrossRefGoogle Scholar
  23. 23.
    P. Juijerm, I. Altenberger, Scr. Mater. 56, 745–748 (2007)CrossRefGoogle Scholar
  24. 24.
    C. Ye, S. Suslov, B.J. Kim, E.A. Stach, G.J. Cheng, Acta Mater. 59, 1014–1025 (2011)CrossRefGoogle Scholar
  25. 25.
    I. Nikitin, B. Scholtes, H.J. Maier, I. Altenberger, Scr. Mater. 50, 1345–1350 (2004)CrossRefGoogle Scholar
  26. 26.
    P. Juijerm, I. Altenberger, J. Met. Mater. Miner. 17, 59–65 (2007)Google Scholar
  27. 27.
    A. Wick, V. Schulze, O. Vöhringer, Mater. Sci. Eng. A Struct. 293, 191–197 (2000)CrossRefGoogle Scholar
  28. 28.
    S. Prabhakaran, S. Kalainathan, Mater. Des. 107, 98–107 (2016)CrossRefGoogle Scholar
  29. 29.
    E. Kerscher, K.H. Lang, O. Vöhringer, D. Löhe, Int. J. Fatigue 30, 1838–1842 (2008)CrossRefGoogle Scholar
  30. 30.
    W. Wei, Y. Feng, L. Han, Q. Zhang, J. Zhang, Mater. Sci. Eng. A Struct. 734, 20–26 (2018)CrossRefGoogle Scholar
  31. 31.
    I. Altenberger, B. Scholtes, Scr. Mater. 41, 873–881 (1999)CrossRefGoogle Scholar
  32. 32.
    R.K. Nalla, I. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, R.O. Ritchie, Mater. Sci. Eng. A Struct. 355, 216–230 (2003)CrossRefGoogle Scholar
  33. 33.
    P. Donhongprai, P. Juijerm, J. Min. Metall. Sect. B Metall. 54, 67–71 (2018)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Materials Engineering, Faculty of EngineeringKasetsart UniversityBangkokThailand

Personalised recommendations