New Eutectic High-Entropy Alloys Based on Co–Cr–Fe–Mo–Ni–Al: Design, Characterization and Mechanical Properties

  • Hakan GasanEmail author
  • Akin Ozcan


New eutectic high-entropy alloys based on novel (CoqCrvFewMoyNiz)100−xAlx alloy systems were designed using both thermodynamic and computational approaches. After considering 324 equilibrium diagrams, ten potential eutectic compositions were determined to possess a eutectic point comprising FCC and B2 phases. (Co40Cr10Fe5Mo5Ni40)82,2Al17.8 was found to have a fully eutectic structure through experimental analysis, which had a negligible error (0.23%) compared to that of the computational modeling. The XRD patterns showed that the alloy was composed of only FCC and B2 phases (with volume fractions of 73.4% and 26.6%, respectively) and did not contain σ phase, which was predicted by the computational model to appear at low temperatures. Among all other alloys, the hypereutectic (18 at% Al) alloy exhibited the highest compressive yield strength (729 MPa) and ultimate compressive strength (2844 MPa), and the hypoeutectic (16 at% Al) alloy had the highest compressive ductility (~ 39%). For all fabricated alloys (hypoeutectic, eutectic, and hypereutectic), the compressive strength and strain exceeded 2514 MPa and 27%, respectively.

Graphic Abstract


Eutectic high-entropy alloys Alloy design Microstructure Mechanical properties 



Financial assistance from The Scientific and Technological Research Council of Turkey is gratefully acknowledged (Project No: MAG 216M063).


  1. 1.
    C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang, Surf. Coat. Technol. (2006). CrossRefGoogle Scholar
  2. 2.
    B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng., A (2004). CrossRefGoogle Scholar
  3. 3.
    C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, T.-T. Shun, Metall. Mater. Trans. A (2004). CrossRefGoogle Scholar
  4. 4.
    L. Jiang, Z.Q. Cao, J.C. Jie, J.J. Zhang, Y.P. Lu, T.M. Wang, T.J. Li, J. Alloys Compd. (2015). CrossRefGoogle Scholar
  5. 5.
    O.N. Senkov, S.L. Semiatin, J. Alloys Compd. (2015). CrossRefGoogle Scholar
  6. 6.
    N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, G.A. Salishchev, J. Alloys Compd. (2015). CrossRefGoogle Scholar
  7. 7.
    H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. (2009). CrossRefGoogle Scholar
  8. 8.
    T.T. Shun, L.Y. Chang, M.H. Shiu, Mater. Charact. (2012). CrossRefGoogle Scholar
  9. 9.
    T.T. Shun, L.Y. Chang, M.H. Shiu, Mater. Sci. Eng., A (2012). CrossRefGoogle Scholar
  10. 10.
    F. Meng, I. Baker, J. Alloys Compd. (2015). CrossRefGoogle Scholar
  11. 11.
    G. Laplanche, O. Horst, F. Otto, G. Eggeler, E.P. George, J. Alloys Compd. (2015). CrossRefGoogle Scholar
  12. 12.
    L. Jiang, Y. Lu, Y. Dong, T. Wang, Z. Cao, T. Li, Intermetallics (2014). CrossRefGoogle Scholar
  13. 13.
    F. He, Z. Wang, P. Cheng, Q. Wang, J. Li, Y. Dang, J. Wang, C.T. Liu, J. Alloys Compd. (2016). CrossRefGoogle Scholar
  14. 14.
    Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, Sci. Rep. (2014). CrossRefGoogle Scholar
  15. 15.
    Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. (2017). CrossRefGoogle Scholar
  16. 16.
    Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today (2016). CrossRefGoogle Scholar
  17. 17.
    S. Guo, C.T. Liu, Prog. Nat. Sci. Mater. Int. (2011). CrossRefGoogle Scholar
  18. 18.
    X. Yang, Y. Zhang, Mater. Chem. Phys. (2012). CrossRefGoogle Scholar
  19. 19.
  20. 20.
    A.T. Samaei, M.M. Mirsayar, M.R.M. Aliha, Eng. Solid Mech. (2015). CrossRefGoogle Scholar
  21. 21.
    H.H. Yang, W.T. Tsai, J.C. Kuo, C.C. Yang, J. Alloys Compd. (2011). CrossRefGoogle Scholar
  22. 22.
    S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. (2011). CrossRefGoogle Scholar
  23. 23.
    S. Fang, X. Xiao, L. Xia, W. Li, Y. Dong, J. Non. Cryst. Solids (2003). CrossRefGoogle Scholar
  24. 24.
    W. Kohn, L.J. Sham, Phys. Rev. (1965). CrossRefGoogle Scholar
  25. 25.
    M. Gao, D. Alman, Entropy (2013). CrossRefGoogle Scholar
  26. 26.
    D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Entropy (2014). CrossRefGoogle Scholar
  27. 27.
    F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, U.R. Kattner, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. (2014). CrossRefGoogle Scholar
  28. 28.
    W. Zhao, D. Miao, Y. Zhang, Z. He, J. Iron. Steel Res. Int. (2017). CrossRefGoogle Scholar
  29. 29.
    C. Tang, P. Ren, X. Chen, Phys. Lett. Sect. A Gen. At. Solid State Phys. (2019). CrossRefGoogle Scholar
  30. 30.
    X.D. Xu, S. Guo, T.G. Nieh, C.T. Liu, A. Hirata, M.W. Chen, Materialia (2019). CrossRefGoogle Scholar
  31. 31.
    L. Lutterotti, P. Scardi, J. Appl. Crystallogr. (1990). CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringEskisehir Osmangazi UniversityEskisehirTurkey
  2. 2.Institute of ScienceEskisehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations