Advertisement

Effect of the Vacuum Heat Treatment on the Microstructure and Mechanical Properties of the Galvanized-Q235/AZ91D Bimetal Material Produced by Solid–Liquid Compound Casting

  • Jun Cheng
  • Jian-hua ZhaoEmail author
  • Dengzhi Zheng
  • Ke He
  • Yu Guo
Article
  • 14 Downloads

Abstract

The galvanized-Q235/AZ91D bimetallic material was achieved via solid–liquid compound casting, and the effect of the heat treatment at 250 °C for 3 h on the microstructure and mechanical properties of the galvanized-Q235/AZ91D bimetallic material were investigated. The interface zone in the galvanized-Q235/AZ91D was composed of three different layers which were the FeAl3 + α-Mg, (α-Mg + MgZn), and α-Mg + (α-Mg + MgZn) from the galvanized-Q235 to AZ91D, successively. After the heat treatment, the (α-Mg + MgZn) eutectic structure was transformed into Al5Mg11Zn4 to promote the microhardness from 139.2 HV to reach 298.8 HV. In addition, the α-Mg and (α-Mg + Mg12Al17) eutectic structure in AZ91D were separately transformed into (α-Mg + Al5Mg11Zn4) and Al5Mg11Zn4 resulting in the increasement of microhardness, from 59.5 to 173.4 HV and 294.2 HV, respectively. Moreover, the interfacial shear strength was changed from 11.23 to 24.63 MPa due to the formation of Al5Mg11Zn4 and the vanishment of MgZn.

Graphic Abstract

Keywords

Solid–liquid compound casting Heat treatment Microstructure Interface zone Hot-dip galvanizing Shear strength Microhardness 

Notes

Acknowledgements

This work was funded by the National Science Foundation of China (No. 51875062). In addition, this work was partly supported by the National Engineering Research Centre for Magnesium Alloys of China.

References

  1. 1.
    T.E.B.L. Mordike, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 302, 37–45 (2001)CrossRefGoogle Scholar
  2. 2.
    F. Pan, M. Yang, X. Chen, J. Mater. Sci. Technol. 32(12), 1211–1221 (2016)CrossRefGoogle Scholar
  3. 3.
    G.P.L. Rama Krishna, G. Sundararajan, Metall. Mater. Trans. A 41A, 3499–3508 (2010)CrossRefGoogle Scholar
  4. 4.
    G.C. QiangChen, H. Fei, X. Xia, Y. Wu, Metall. Mater. Trans. A 48(7), 3497–3513 (2017)CrossRefGoogle Scholar
  5. 5.
    M.S.K. Lawrence Cho, Y.H. Kim, B.C. De Cooman, Metall. Mater. Trans. A 45A, 4484–4498 (2014)Google Scholar
  6. 6.
    ASM International, Alloy Phase Diagrams of ASM Handbook, 8th edn. (1992)Google Scholar
  7. 7.
    L. Liu, L. Xiao, D.L. Chen, J.C. Feng, S. Kim, Y. Zhou, Mater. Design 45, 336–342 (2013)CrossRefGoogle Scholar
  8. 8.
    J.C. Cheng, J.H. Zhao, J.Y. Zhang, Y. Guo, K. He, J.J. Shang-guan, F.L. Wen, Materials 12(10), 1–14 (2019)CrossRefGoogle Scholar
  9. 9.
    Y. Feng, Y. Li, Z. Luo, Z. Ling, Z. Wang, J. Mater. Process. Technol. 236, 114–122 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Jana, Y. Hovanski, G.J. Grant, Metall. Mater. Trans. A 41(12), 3173–3182 (2010)CrossRefGoogle Scholar
  11. 11.
    K.N.Y.C. Chen, Mater. Trans. 50(11), 2598–2603 (2009)CrossRefGoogle Scholar
  12. 12.
    G. Song, J. Yu, T. Li, J. Wang, L. Liu, J. Manuf. Process 31, 131–138 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Santella, E. Brown, M. Pozuelo, T.Y. Pan, J.M. Yang, Sci. Technol. Weld. Join. 17(3), 219–224 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Shakil, N.H. Tariq, M. Ahmad, M.A. Choudhary, J.I. Akhter, S.S. Babu, Mater. Design 55, 263–273 (2014)CrossRefGoogle Scholar
  15. 15.
    V.K. Patel, S.D. Bhole, D.L. Chen, Mater. Design 45, 236–240 (2013)CrossRefGoogle Scholar
  16. 16.
    J.-H. Zhao, W.-Q. Zhao, S. Qu, Y.-Q. Zhang, Trans. Nonferrous Metals Soc. China 29(1), 51–58 (2019)CrossRefGoogle Scholar
  17. 17.
    W. Jiang, Z. Jiang, G. Li, Y. Wu, Z. Fan, Mater. Sci. Technol. 34(4), 487–492 (2017)CrossRefGoogle Scholar
  18. 18.
    K. He, J. Zhao, P. Li, J. He, Q. Tang, Mater. Design 112, 553–564 (2016)CrossRefGoogle Scholar
  19. 19.
    G. Li, W. Jiang, W. Yang, Z. Jiang, F. Guan, H. Jiang, Z. Fan, Metall. Mater. Trans. A 50(2), 1076–1090 (2018)CrossRefGoogle Scholar
  20. 20.
    J.-H. Zhao, Y.-Q. Zhang, J.-S. He, P. Li, Surf. Coat. Technol. 307, 301–307 (2016)CrossRefGoogle Scholar
  21. 21.
    W. Jiang, G. Li, Z. Jiang, Y. Wu, Z. Fan, Mater. Sci. Technol. 34(12), 1519–1528 (2018)CrossRefGoogle Scholar
  22. 22.
    W. Jiang, Z. Fan, C. Li, J. Mater. Process. Technol. 226, 25–31 (2015)CrossRefGoogle Scholar
  23. 23.
    G.R. Zare, M. Divandari, H. Arabi, Mater. Sci. Technol. 29(2), 190–196 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Hu, Y.-Q. Chen, L. Li, H.-D. Hu, Z.-A. Zhu, Trans. Nonferrous Metals Soc. China 26(6), 1555–1563 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanical TransmissionChongqing UniversityChongqingChina
  2. 2.College of Materials Science and EngineeringChongqing UniversityChongqingChina

Personalised recommendations