Advertisement

Annealing Effects in Cast Commercial Aluminium Al–Mg–Zn–Cu(–Sc–Zr) Alloys

  • Martin VlachEmail author
  • Jakub Čížek
  • Veronika Kodetová
  • Tomáš Kekule
  • František Lukáč
  • Miroslav Cieslar
  • Hana Kudrnová
  • Lucia Bajtošová
  • Michal Leibner
  • Petr Harcuba
  • Jaroslav Málek
  • Volkmar Neubert
Article
  • 61 Downloads

Abstract

Precipitation reactions of the cast Al–3.4 at%Mg–2.7 at%Zn–0.80 at%Cu–0.10 at%Fe–0.05 at%Si alloy with and without addition of 0.14 at%Sc and 0.06 at%Zr were characterized by electrical resistometry, electron microscopy, X-ray diffraction, thermal analysis, microhardness testing, and positron annihilation. The AlMgZnCuScZr alloy contains a grain boundary T-phase (Mg32(Al,Cu,Zn)49) with a cubic and/or quasicrystalline structure. The AlMgZnCu alloy contains a mixture of MgZn2- and the T-phase. Primary multilayer Al3(Sc,Zr) particles precipitated during casting and subsequent cooling. The particles have a layered Al3(Sc,Zr) + α-Al + Al3(Sc,Zr) structure, i.e. consist of regions enriched with both Sc and Zr. Small atomic Mg,Zn(,Cu)-rich clusters coherent with the matrix were formed during the cooling of both alloys and/or in the course of their storage at ambient temperature. Their dissolution enables precipitation of the transient η′- and/or stable η-phases of the AlZnMgCu system in both investigated alloys. The effective activation energy for the dissolution of the clusters was calculated as ~ 103 kJ/mol. Annealing of the AlMgZnCuScZr alloy above 300 °C leads to a formation of the secondary Al3(Sc,Zr) particles which cause precipitation hardening and guarantee thermal stability of mechanical properties. Addition of Sc and Zr micro alloying elements resulted in a substantial grain refinement. The grain size remains unchanged up to isochronal annealing at 390 °C.

Graphic Abstract

Keywords

7xxx series Clusters TEM Positron annihilation Al3(Sc,Zr) particles Activation energy 

Notes

Acknowledgements

This work was supported by The Czech Science Foundation (GACR), Project 17-17139S. The authors are also grateful to Ivana Stulíková, Tamara Čučková and Bohumil Smola for their help. PH acknowledges support by ERDF under the project CZ.02.1.01/0.0/0.0/15_003/0000485.

References

  1. 1.
    L.S. Toropova, D.G. Eskin, M.L. Kharakterova, T.V. Dobatkina, Advanced Aluminium Alloys Containing Scandium—Structure and Properties (Gordon and Breach Science Publisher, The Netherlands, 1998)Google Scholar
  2. 2.
    S. Chen, L. Jiyu, H. Gui-yun, C. Kanghua, H. Lanping, J. Alloys Compd. (2018).  https://doi.org/10.1016/j.jallcom.2018.05.063 CrossRefGoogle Scholar
  3. 3.
    P. Lang, T. Wojcik, E. Povoden-Karadeniz, A. Falahati, E. Kozeschnik, J. Alloys Compd. (2014).  https://doi.org/10.1016/j.jallcom.2014.04.119 CrossRefGoogle Scholar
  4. 4.
    Z. Li, B. Xiong, Y. Zhang, B. Zhu, F. Wang, H. Liu, Mater. Charact. (2008).  https://doi.org/10.1016/j.matchar.2007.01.006 CrossRefGoogle Scholar
  5. 5.
    K.R. Prasanta, M.M. Ghosh, K.S. Ghosh, Mater. Charact. (2015).  https://doi.org/10.1016/j.matchar.2015.03.025 CrossRefGoogle Scholar
  6. 6.
    K.S. Ghosh, N. Gao, M.J. Starink, Mater. Sci. Eng. A (2012).  https://doi.org/10.1016/j.msea.2012.05.026 CrossRefGoogle Scholar
  7. 7.
    Y. Wang, Z. Li, B. Xiong, K. Wen, S. Huang, X. Li, Y. Zhang, Metal. Mater. Int. (2019).  https://doi.org/10.1007/s12540-018-00210-1 CrossRefGoogle Scholar
  8. 8.
    M.J. Starink, S.C. Wang, Acta Mater. (2003).  https://doi.org/10.1016/S1359-6454(03)00363-X CrossRefGoogle Scholar
  9. 9.
    X.B. Yang, J.H. Chen, J.Z. Liu, F. Qin, J. Xie, C.L. Wu, J. Alloys Compd. (2014).  https://doi.org/10.1016/j.jallcom.2014.04.185 CrossRefGoogle Scholar
  10. 10.
    W. Yang, S. Ji, M. Wang, Z. Li, J. Alloys Compd. (2014).  https://doi.org/10.1016/j.jallcom.2014.05.061 CrossRefGoogle Scholar
  11. 11.
    W.X. Shu, L.G. Hou, C. Zhang, F. Zhang, J.C. Liu, J.T. Liu, L.Z. Zhuang, J.S. Zhang, Mater. Sci. Eng. A (2016).  https://doi.org/10.1016/j.msea.2016.01.039 CrossRefGoogle Scholar
  12. 12.
    P.A. Rometsch, Y. Zhang, S. Khight, Trans. Nonferrous Met. Soc. China (2014).  https://doi.org/10.1016/S1003-6326(14)63306-9 CrossRefGoogle Scholar
  13. 13.
    M. Zhang, T. Liu, C. He, J. Ding, E. Liu, C. Shi, J. Li, N. Zhao, J. Alloys Compd. (2016).  https://doi.org/10.1016/j.jallcom.2015.10.296 CrossRefGoogle Scholar
  14. 14.
    J. Tang, H. Chen, X. Zhang, S. Liu, W. Liu, H. Ouyang, H. Li, Trans. Nonferrous Met. Soc. China (2012).  https://doi.org/10.1016/S1003-6326(11)61313-7 CrossRefGoogle Scholar
  15. 15.
    M. Vlach, V. Kodetova, B. Smola, J. Cizek, T. Kekule, M. Cieslar, H. Kudrnova, L. Bajtosova, M. Leibner, I. Prochazka, Kovove Mater. (2018).  https://doi.org/10.4149/km_2018_6_367 CrossRefGoogle Scholar
  16. 16.
    P. Priya, D.R. Johnson, M.J.M. Krane, Comput. Mater. Sci. (2017).  https://doi.org/10.1016/j.commatsci.2017.08.008 CrossRefGoogle Scholar
  17. 17.
    P. Montagné, M. Tillard, J. Alloys Compd. (2016).  https://doi.org/10.1016/j.jallcom.2015.09.201 CrossRefGoogle Scholar
  18. 18.
    N.Q. Vo, D.C. Dunand, D.N. Seidman, Mater. Sci. Eng. A (2016).  https://doi.org/10.1016/j.msea.2016.09.065 CrossRefGoogle Scholar
  19. 19.
    M. Slapakova, B. Krivska, J. Bajer, O. Gryndin, M. Stolbchenko, M. Cieslar, Acta Phys. Pol. A (2018).  https://doi.org/10.12693/APhysPolA.134.871 CrossRefGoogle Scholar
  20. 20.
    M. Kolar, V. Očenášek, J. Uhlíř, I. Stulíková, B. Smola, M. Vlach, V. Neubert, K. Šperlink, Mater. Sci. Forum (2008).  https://doi.org/10.4028/www.scientific.net/MSF.567-568.357 CrossRefGoogle Scholar
  21. 21.
    M. Vlach, B. Smola, I. Stulikova, V. Ocenasek, Int. J. Mater. Res. (2009).  https://doi.org/10.3139/146.110022 CrossRefGoogle Scholar
  22. 22.
    N.A. Belov, E.A. Naumova, T.K. Akopyan, V.V. Doroshenko, J. Alloys Compd. (2018).  https://doi.org/10.1016/j.jallcom.2018.05.281 CrossRefGoogle Scholar
  23. 23.
    W. Lefebvre, F. Danoix, H. Hallem, B. Forbord, A. Bostel, K. Martinsen, J. Alloys Compd. (2009).  https://doi.org/10.1016/j.jallcom.2008.02.043 CrossRefGoogle Scholar
  24. 24.
    Z. Yin, Q. Pan, Y. Zhang, F. Jiang, Mater. Sci. Eng. A (2000).  https://doi.org/10.1016/S0921-5093(99)00682-6 CrossRefGoogle Scholar
  25. 25.
    W.G. Zhang, Y.C. Ye, L.J. He, P.J. Li, X. Feng, L.S. Novikov, Mater. Sci. Eng. A (2013).  https://doi.org/10.1016/j.msea.2013.04.067 CrossRefGoogle Scholar
  26. 26.
    S. Costa, H. Puga, J. Barbosa, A.M.P. Pinto, Mater. Des. (2012).  https://doi.org/10.1016/j.matdes.2012.06.019 CrossRefGoogle Scholar
  27. 27.
    V.G. Davydov, T.D. Rostova, V.V. Zakharov, Y.A. Filatov, V.I. Yelagin, Mater. Sci. Eng. A (2000).  https://doi.org/10.1016/S0921-5093(99)00652-8 CrossRefGoogle Scholar
  28. 28.
    M.S. Kaiser, S. Datta, A. Roychowdhury, M.K. Banerjee, Mater. Charact. (2008).  https://doi.org/10.1016/j.matchar.2008.03.006 CrossRefGoogle Scholar
  29. 29.
    M. Vlach, J. Čížek, B. Smola, O. Melikhova, M. Vlček, V. Kodetová, H. Kudrnová, P. Hruška, Mater. Charact. (2017).  https://doi.org/10.1016/j.matchar.2017.04.017 CrossRefGoogle Scholar
  30. 30.
    Y. Deng, Z. Yin, Q. Pan, G. Xu, Y. Duan, Y. Wang, J. Alloys Compd. (2017).  https://doi.org/10.1016/j.jallcom.2016.10.094 CrossRefGoogle Scholar
  31. 31.
    A. De Luca, D.N. Seidman, D.C. Dunand, Acta Mater. (2019).  https://doi.org/10.1016/j.actamat.2018.11.031 CrossRefGoogle Scholar
  32. 32.
    P. Okle, J.D. Lin, T. Zhu, D.C. Dunand, D.N. Seidman, Mater. Sci. Eng. A (2019).  https://doi.org/10.1016/j.msea.2018.10.058 CrossRefGoogle Scholar
  33. 33.
    M. Vlach, I. Stulikova, B. Smola, H. Cisarova, J. Piesova, S. Danis, R. Gemma, J. Malek, D. Tanprayoon, V. Neubert, Int. J. Mater. Res. (2012).  https://doi.org/10.3139/146.110712 CrossRefGoogle Scholar
  34. 34.
    S. Zhou, Z. Zhang, M. Li, D. Pan, H. Su, X. Du, P. Li, Y. Wu, Mater. Des. (2016).  https://doi.org/10.1016/j.matdes.2015.10.132 CrossRefGoogle Scholar
  35. 35.
    S. Zhou, Z. Zhang, M. Li, D. Pan, H. Su, X. Du, P. Li, Y. Wu, Mater. Lett. (2016).  https://doi.org/10.1016/j.matlet.2015.10.072 CrossRefGoogle Scholar
  36. 36.
    S. Zhou, Z. Zhang, M. Li, D. Pan, H. Su, X. Du, P. Li, Y. Wu, Mater. Charact. (2016).  https://doi.org/10.1016/j.matchar.2016.05.011 CrossRefGoogle Scholar
  37. 37.
    J.H. Li, M. Wiessner, M. Alby, S. Wurster, B. Sartory, F. Hofer, P. Schumacher, Mater. Charact. (2015).  https://doi.org/10.1016/j.matchar.2015.01.018 CrossRefGoogle Scholar
  38. 38.
    C. Xu, R. Du, X. Wang, S. Hanada, H. Yamagata, W. Wang, C. Ma, Trans. Nonferrous Met. Soc. China (2014).  https://doi.org/10.1016/S1003-6326(14)63366-5 CrossRefGoogle Scholar
  39. 39.
    K.B. Hyde, A.F. Norman, P.B. Prangnell, Acta Mater. (2001).  https://doi.org/10.1016/S1359-6454(01)00050-7 CrossRefGoogle Scholar
  40. 40.
    A.F. Norman, P.B. Prangnell, R.S. McEwen, Acta Mater. (1998).  https://doi.org/10.1016/S1359-6454(98)00257-2 CrossRefGoogle Scholar
  41. 41.
    M. Hájek, J. Veselý, M. Cieslar, Mater. Sci. Eng. A (2007).  https://doi.org/10.1016/j.msea.2006.01.175 CrossRefGoogle Scholar
  42. 42.
    J. Čížek, J. Mater. Sci. Technol. (2018).  https://doi.org/10.1016/j.jmst.2017.11.050 CrossRefGoogle Scholar
  43. 43.
    R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors (Springer, Berlin, 1999)CrossRefGoogle Scholar
  44. 44.
    A. Somoza, M.P. Petkov, K.G. Lynn, A. Dupasquier, Phys. Rev. B (2002).  https://doi.org/10.1103/PhysRevB.65.094107 CrossRefGoogle Scholar
  45. 45.
    F. Bečvář, J. Čížek, I. Procházka, J. Janotová, Nucl. Instrum. Methods A (2005).  https://doi.org/10.1016/j.nima.2004.09.031 CrossRefGoogle Scholar
  46. 46.
    J. Čížek, M. Vlček, I. Procházka, Nucl. Instrum. Methods Phys. Res. A (2010).  https://doi.org/10.1016/j.nima.2010.07.046 CrossRefGoogle Scholar
  47. 47.
  48. 48.
    N.Q. Chinh, J. Lendvai, D.H. Ping, K. Hono, J. Alloys Compd. (2004).  https://doi.org/10.1016/j.jallcom.2003.11.175 CrossRefGoogle Scholar
  49. 49.
    M. Dellah, M. Bournane, K.A. Ragab, Y. Sadaoui, A.F. Sirenko, Mater. Des. (2013).  https://doi.org/10.1016/j.matdes.2013.02.078 CrossRefGoogle Scholar
  50. 50.
    C. Antonione, F. Marino, G. Riontino, S. Abis, E. Russo, Mater. Chem. Phys. (1988).  https://doi.org/10.1016/0254-0584(88)90055-7 CrossRefGoogle Scholar
  51. 51.
    V. Kodetová, M. Vlach, B. Smola, T. Kekule, S. Daniš, H. Kudrnová, J. Málek, Acta Phys. Pol. A (2018).  https://doi.org/10.12693/APhysPolA.134.631 CrossRefGoogle Scholar
  52. 52.
    M. Murayama, K. Hono, Acta Mater. (1999).  https://doi.org/10.1016/S1359-6454(99)00033-6 CrossRefGoogle Scholar
  53. 53.
    T.M. Hall, A.N. Goland, C.L. Snead, Phys. Rev. B (1974).  https://doi.org/10.1103/PhysRevB.10.3062 CrossRefGoogle Scholar
  54. 54.
    M. Liu, J. Čížek, C.S.T. Chang, J. Banhart, Acta Mater. (2015).  https://doi.org/10.1016/j.actamat.2015.02.019 CrossRefGoogle Scholar
  55. 55.
    N. Afify, A.F. Gaber, G. Abbady, Mater. Sci. Appl. (2011).  https://doi.org/10.4236/msa.2011.25056 CrossRefGoogle Scholar
  56. 56.
    S. Abis, G. Riontino, Mater. Lett. (1987).  https://doi.org/10.1016/0167-577X(87)90060-7 CrossRefGoogle Scholar
  57. 57.
    J. Buha, R.N. Lumley, A.G. Crosky, Mater. Sci. Eng. A (2008).  https://doi.org/10.1016/j.msea.2008.02.039 CrossRefGoogle Scholar
  58. 58.
    J.C. Werenskiold, A. Deschamps, Y. Bréchet, Mater. Sci. Eng. A (2000).  https://doi.org/10.1016/S0921-5093(00)01247-8 CrossRefGoogle Scholar
  59. 59.
    S.V. Emani, J. Benedyk, P. Nash, D. Chen, J. Mater. Sci. (2009).  https://doi.org/10.1007/s10853-009-3879-8 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Martin Vlach
    • 1
    Email author
  • Jakub Čížek
    • 1
  • Veronika Kodetová
    • 1
  • Tomáš Kekule
    • 1
  • František Lukáč
    • 1
    • 2
  • Miroslav Cieslar
    • 1
  • Hana Kudrnová
    • 1
  • Lucia Bajtošová
    • 1
  • Michal Leibner
    • 1
  • Petr Harcuba
    • 1
  • Jaroslav Málek
    • 3
  • Volkmar Neubert
    • 4
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Institute of Plasma PhysicsThe Czech Academy of SciencesPragueCzech Republic
  3. 3.Faculty of Mechanical EngineeringCzech Technical University in PraguePragueCzech Republic
  4. 4.Institut für Materialprüfung und WerkstofftechnikClausthal-ZellerfeldGermany

Personalised recommendations