Advertisement

Improved Mg–Al–Zn Magnesium Alloys Produced by High Energy Milling and Hot Sintering

  • Y. GalindezEmail author
  • E. Correa
  • A. A. Zuleta
  • A. Valencia-Escobar
  • D. Calderon
  • L. Toro
  • P. Chacón
  • F. Echeverría E.
Article
  • 86 Downloads

Abstract

Powders of commercially pure magnesium (c.p. Mg), AZ91 magnesium alloy and zinc were milled using a high-energy mill. The effect of high energy milling (HEM) on powders morphology, chemical composition, crystallite size and compaction of different powders mixtures were studied. After compaction, samples were thermally treated at 450 °C and both density and hardness were evaluated. It was found that as milling speed and time increases, the AZ91 alloy and c.p. Mg particles were deformed and fractured up to sizes below 10 μm. X-ray diffraction patterns for both the c.p. Mg and the AZ91 powders revealed that the milling process induced changes in both the α-Mg and the β-Mg17Al12 phases. By increasing the milling speed, the crystallite size decreases by up to 70% for AZ91 powders and by 80% for magnesium powders. The relative densities of the compacted AZ samples were greater than 85% and this parameter increased for all samples after thermal treatment at 450 °C, obtaining densities higher than 88%. Hardness measurements disclosed values as high as 84.3 HR15T. Theoretical calculations of mechanical strength were obtained for all samples based on the hardness values measured, finding very encouraging results for the three Mg alloys.

Graphic Abstract

Keywords

High energy milling AZ91 magnesium alloy Mg Particle size Crystallite size Thermal treatment 

Notes

Acknowledgements

The authors are grateful to Universidad de Antioquia, Universidad Pontificia Bolivariana, Universidad de Medellín, Servicio Nacional de Aprendizaje - SENA and COLCIENCIAS for financial assistance (Project FP44842-023-2017).

Supplementary material

12540_2019_490_MOESM1_ESM.docx (504 kb)
Supplementary material 1 (DOCX 505 kb)
12540_2019_490_MOESM2_ESM.docx (990 kb)
Supplementary material 1 (DOCX 991 kb)

References

  1. 1.
    L. Čížek, M. Greger, L. Pawlica, L.A. Dobrzański, T. Tański, Study of selected properties of magnesium alloy AZ91 after heat treatment and forming. J. Mater. Process. Technol. 157–158, 466–471 (2004).  https://doi.org/10.1016/j.jmatprotec.2004.07.149 CrossRefGoogle Scholar
  2. 2.
    J.U. Lee, S.H. Kim, W.K. Jo, W.H. Hong, W. Kim, J.H. Bae, S.H. Park, Grain-refined AZ92 alloy with superior strength and ductility. Metals Mater. Int. 24, 730–737 (2018).  https://doi.org/10.1007/s12540-018-0097-4 CrossRefGoogle Scholar
  3. 3.
    L.A. Dobrzański, T. Tański, L. Čížek, Z. Brytan, Structure and properties of magnesium cast alloys. J. Mater. Process. Technol. 192–193, 567–574 (2007).  https://doi.org/10.1016/j.jmatprotec.2007.04.045 CrossRefGoogle Scholar
  4. 4.
    M. Mondet, E. Barraud, S. Lemonnier, J. Guyon, N. Allain, T. Grosdidier, Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering. Acta Mater. 119, 55–67 (2016).  https://doi.org/10.1016/j.actamat.2016.08.006 CrossRefGoogle Scholar
  5. 5.
    Y. Xu, L. Hu, T. Deng, L. Ye, Hot deformation behavior and processing map of as-cast AZ61 magnesium alloy. Mater. Sci. Eng. A 559, 528–533 (2013).  https://doi.org/10.1016/j.msea.2012.08.137 CrossRefGoogle Scholar
  6. 6.
    M.A. Jabbari-Taleghani, J.M. Torralba, Hot workability of nanocrystalline AZ91 magnesium alloy. J. Alloys Compd. 595, 1–7 (2014).  https://doi.org/10.1016/j.jallcom.2014.01.091 CrossRefGoogle Scholar
  7. 7.
    S. Hwang, C. Nishimura, P.G. McCormick, Mechanical milling of magnesium powder. Mater. Sci. Eng. A 318, 22–33 (2001).  https://doi.org/10.1016/S0921-5093(01)01767-1 CrossRefGoogle Scholar
  8. 8.
    Z. Zhang, R. Yang, G. Chen, Y. Zhao, Y. Shao, Correlation between microstructure and tensile behavior in powder metallurgy ZK60 alloys. Mater. Lett. 89, 166–168 (2012).  https://doi.org/10.1016/j.matlet.2012.07.029 CrossRefGoogle Scholar
  9. 9.
    G. Garcés, F. Domínguez, P. Pérez, G. Caruana, P. Adeva, Effect of extrusion temperature on the microstructure and plastic deformation of PM-AZ92. J. Alloys Compd. 422, 293–298 (2006).  https://doi.org/10.1016/j.jallcom.2005.11.069 CrossRefGoogle Scholar
  10. 10.
    M.A. Jabbari Taleghani, J.M. Torralba, Hot deformation behavior and workability characteristics of AZ91 magnesium alloy powder compacts—a study using processing map. Mater. Sci. Eng. A. 580, 142–149 (2013).  https://doi.org/10.1016/j.msea.2013.04.071 CrossRefGoogle Scholar
  11. 11.
    F. Wen-bin, F. Wa, S. Hong-fei, Preparation of high-strength Mg–3Al–Zn alloy with ultrafine-grained microstructure by powder metallurgy. Powder Technol. 212, 161–165 (2011).  https://doi.org/10.1016/j.powtec.2011.05.006 CrossRefGoogle Scholar
  12. 12.
    A. Azimi, A. Shokuhfar, A. Zolriasatein, Nanostructured Al–Zn–Mg–Cu–Zr alloy prepared by mechanical alloying followed by hot pressing. Mater. Sci. Eng. A 595, 124–130 (2014).  https://doi.org/10.1016/j.msea.2013.11.094 CrossRefGoogle Scholar
  13. 13.
    B. Zheng, O. Ertorer, Y. Li, Y. Zhou, S.N. Mathaudhu, C.Y.A. Tsao, E.J. Lavernia, High strength, nano-structured Mg–Al–Zn alloy. Mater. Sci. Eng. A 528, 2180–2191 (2011).  https://doi.org/10.1016/j.msea.2010.11.073 CrossRefGoogle Scholar
  14. 14.
    W. Fang, W. Bin Fang, H.F. Sun, Bulk Mg–3Al–Zn alloy with ultrafine grain size produced by powder metallurgy. J. Alloys Compd. 509, 4887–4890 (2011).  https://doi.org/10.1016/j.jallcom.2011.01.200 CrossRefGoogle Scholar
  15. 15.
    Y. Miyahara, Z. Horita, T.G. Langdon, Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP. Mater. Sci. Eng. A 420, 240–244 (2006).  https://doi.org/10.1016/j.msea.2006.01.043 CrossRefGoogle Scholar
  16. 16.
    V. Jain, R.S. Mishra, R. Verma, E. Essadiqi, Superplasticity and microstructural stability in a Mg alloy processed by hot rolling and friction stir processing. Scr. Mater. 68, 447–450 (2013).  https://doi.org/10.1016/j.scriptamat.2012.11.009 CrossRefGoogle Scholar
  17. 17.
    M.T. Pérez-Prado, J.A. Del Valle, O.A. Ruano, Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding. Scr. Mater. 51, 1093–1097 (2004).  https://doi.org/10.1016/j.scriptamat.2004.07.028 CrossRefGoogle Scholar
  18. 18.
    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001).  https://doi.org/10.1016/S0079-6425(99)00010-9 CrossRefGoogle Scholar
  19. 19.
    A.K. Chaubey, S. Scudino, M. Samadi Khoshkhoo, K.G. Prashanth, N.K. Mukhopadhyay, B.K. Mishra, J. Eckert, High-strength ultrafine grain Mg–7.4%Al alloy synthesized by consolidation of mechanically alloyed powders. J. Alloys Compd. 610, 456–461 (2014).  https://doi.org/10.1016/j.jallcom.2014.05.029 CrossRefGoogle Scholar
  20. 20.
    M. Rashad, F. Pan, M. Asif, Room temperature mechanical properties of Mg–Cu–Al alloys synthesized using powder metallurgy method. Mater. Sci. Eng. A 644, 129–136 (2015).  https://doi.org/10.1016/j.msea.2015.07.061 CrossRefGoogle Scholar
  21. 21.
    E.M. Ruiz Navas, C. Edil da Costa, F. Verlasco López, J.M. Torralba Castelló, Aleación mecánica: Método de obtención de polvos metálicos y de materiales compuestos. Rev. Metal. 36, 279–286 (2000).  https://doi.org/10.3989/revmetalm.2000.v36.i4.578 CrossRefGoogle Scholar
  22. 22.
    K. Matsuzaki, K. Hatsukano, K. Hanada, M. Takahashi, T. Shimizu, Mechanical properties and formability of PM Mg–Al based alloys, in Proceedings of the 6th International Conference on Magnesium Alloys and Their Applications, pp. 171–175 (2004).  https://doi.org/10.1002/3527603565.ch25 CrossRefGoogle Scholar
  23. 23.
    Y.J. Zhou, A.Y. Jiang, J.X. Liu, The effect of sintering temperature to the microstructure and properties of AZ91 magnesium alloy by powder metallurgy. Appl. Mech. Mater. 377, 250–254 (2013).  https://doi.org/10.4028/www.scientific.net/AMM.377.250 CrossRefGoogle Scholar
  24. 24.
    J. Fogagnolo, F. Velasco, M. Robert, J. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders. Mater. Sci. Eng. A 342, 131–143 (2003).  https://doi.org/10.1016/S0921-5093(02)00246-0 CrossRefGoogle Scholar
  25. 25.
    S.S. Razavi-Tousi, J.A. Szpunar, Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling. Powder Technol. 284, 149–158 (2015).  https://doi.org/10.1016/j.powtec.2015.06.035 CrossRefGoogle Scholar
  26. 26.
    A. Chaubey, S. Scudino, M. Khoshkhoo, K. Prashanth, N. Mukhopadhyay, B. Mishra, J. Eckert, Synthesis and characterization of nanocrystalline Mg–74%Al powders produced by mechanical alloying. Metals (Basel) 3, 58–68 (2013).  https://doi.org/10.3390/met3010058 CrossRefGoogle Scholar
  27. 27.
    M.K. Habibi, K.S. Tun, M. Gupta, An investigation into the effect of ball milling of reinforcement on the enhanced mechanical response of magnesium. J. Compos. Mater. 45(24), 2483–2493 (2011).  https://doi.org/10.1177/0021998311401098 CrossRefGoogle Scholar
  28. 28.
    A. Wagih, Effect of milling time on morphology and microstructure of Al–Mg/Al2O3 nanocomposite powder produced by mechanical alloying. Int. J. Adv. Eng. Sci. 4, 1–7 (2014)Google Scholar
  29. 29.
    M.O. Pekguleryuz, K.U. Kainer, A.A. Kaya, Fundamental of Magnesium Alloy Metallurgy (Woodhead Publishing, Sawston, 2013)CrossRefGoogle Scholar
  30. 30.
    W. Rasband, ImageJ (1997). https://imagej.nih.gov/ij/. Accessed 20 Jan 2019
  31. 31.
    ASTM International, ASTM E799-03: Standard Practice for Determining Data Criteria and Processing for Liquid Drop Size Analysis, vol. 3 (ASTM International, West Conshohocken, 2015), pp. 1–5.  https://doi.org/10.1520/e0799-03r09.2 CrossRefGoogle Scholar
  32. 32.
    R.S. Joshi, S. Srivastava, H. Singh, Microstructural analysis of nanostructured aluminum alloy strips created from machining based deformation process. Procedia CIRP 14, 130–135 (2014).  https://doi.org/10.1016/j.procir.2014.03.036 CrossRefGoogle Scholar
  33. 33.
    ASTM International, ASTM E18-1: Standard Test Methods for Rockwell Hardness of Metallic Materials (ASTM International, West Conshohocken, 2018), pp. 1–38.  https://doi.org/10.1520/e0018-14.2 CrossRefGoogle Scholar
  34. 34.
    J. Liu, X. Lv, J. Li, X. Zeng, Z. Xu, H. Zhang, L. Jiang, Influence of parameters of high-energy ball milling on the synthesis and densification of magnesium aluminate spinel. Sci. Sinter. 48, 353–362 (2016).  https://doi.org/10.2298/SOS1603353L CrossRefGoogle Scholar
  35. 35.
    R.K. Gupta, B.S. Murty, N. Birbilis, An overview of high-energy ball milled nanocrystalline aluminum alloys (Springer, Berlin, 2017).  https://doi.org/10.1007/978-3-319-57031-0 CrossRefGoogle Scholar
  36. 36.
    ASTM International, ASTM B951-11: Standard Practice for Codification of Unalloyed Magnesium and Magnesium- Alloys, Cast and Wrought (ASTM International, West Conshohocken, 2015), pp. 1–7.  https://doi.org/10.1520/b0951-11.2 CrossRefGoogle Scholar
  37. 37.
    M.H. Yoo, S.R. Agnew, J.R. Morris, K.M. Ho, Non-basal slip systems in HCP metals and alloys: source mechanisms. Mater. Sci. Eng. A 319–321, 87–92 (2001).  https://doi.org/10.1016/S0921-5093(01)01027-9 CrossRefGoogle Scholar
  38. 38.
    S.R. Agnew, Ö. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 21, 1161–1193 (2005).  https://doi.org/10.1016/j.ijplas.2004.05.018 CrossRefGoogle Scholar
  39. 39.
    Q. Liu, J. Song, F. Pan, J. She, S. Zhang, P. Peng, The edge crack, texture evolution, and mechanical properties of Mg–1Al–1Sn–Mn alloy sheets prepared using on-line heating rolling. Metals (Basel) 8, 860 (2018).  https://doi.org/10.3390/met8100860 CrossRefGoogle Scholar
  40. 40.
    L.L.C. Catorceno, H.F.G. de Abreu, A.F. Padilha, Effects of cold and warm cross-rolling on microstructure and texture evolution of AZ31B magnesium alloy sheet. J. Magnes. Alloys 6, 121–133 (2018).  https://doi.org/10.1016/j.jma.2018.04.004 CrossRefGoogle Scholar
  41. 41.
    J. Feng, H. Sun, X. Li, J. Zhang, W. Fang, W. Fang, Microstructures and mechanical properties of the ultrafine-grained Mg–3Al–Zn alloys fabricated by powder metallurgy. Adv. Powder Technol. 27, 550–556 (2016).  https://doi.org/10.1016/j.apt.2016.02.008 CrossRefGoogle Scholar
  42. 42.
    M. Pozuelo, Y.W. Chang, J.M. Yang, Enhanced compressive strength of an extruded nanostructured Mg–10Al alloy. Mater. Sci. Eng. A 594, 203–211 (2014).  https://doi.org/10.1016/j.msea.2013.11.056 CrossRefGoogle Scholar
  43. 43.
    Y. Xun, R. Rodriguez, E.J. Lavernia, F.A. Mohamed, Processing and microstructural evolution of powder metallurgy Zn-22 Pct Al eutectoid alloy containing nanoscale dispersion particles. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36, 2849–2859 (2005).  https://doi.org/10.1007/s11661-005-0280-3 CrossRefGoogle Scholar
  44. 44.
    L. Marotta, R. De Vasconcellos, Y.R. Carvalho, R. Falchete, L. Gustavo, O. De Vasconcellos, M. Lima, D.A. Graça, C. Alberto, A. Cairo, Porous titanium by powder metallurgy for biomedical application : characterization, cell citotoxity and in vivo tests of osseointegration. Biomed. Eng. Tech. Appl. Med. (2012).  https://doi.org/10.5772/2608 CrossRefGoogle Scholar
  45. 45.
    L. Zheng, H. Nie, W. Liang, H. Wang, Y. Wang, Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys. J. Magnes. Alloys 4, 115–122 (2016).  https://doi.org/10.1016/j.jma.2016.04.002 CrossRefGoogle Scholar
  46. 46.
    Z. Zhang, H. Yu, G. Chen, H. Yu, C. Xu, Correlation between microstructure and tensile properties in powder metallurgy AZ91 alloys. Mater. Lett. 65, 2686–2689 (2011).  https://doi.org/10.1016/j.matlet.2011.05.089 CrossRefGoogle Scholar
  47. 47.
    M.A. Jabbari Taleghani, J.M. Torralba, The microstructural evolution of a pre-alloyed AZ91 magnesium alloy powder through high-energy milling and subsequent isothermal annealing. Mater. Lett. 98, 182–185 (2013).  https://doi.org/10.1016/j.matlet.2013.02.052 CrossRefGoogle Scholar
  48. 48.
    T. Lee, M. Yamasaki, Y. Kawamura, J. Go, S.H. Park, High-strength AZ91 alloy fabricated by rapidly solidified flaky powder metallurgy and hot extrusion. Metals Mater. Int. 25, 372–380 (2019).  https://doi.org/10.1007/s12540-018-0204-6 CrossRefGoogle Scholar
  49. 49.
    Z. Wang, Y. Yang, B. Li, Y. Zhang, Z. Zhang, Effect of hot-deformation on microstructure and mechanical properties of AZ80 magnesium alloy. Mater. Sci. Eng. A 582, 36–40 (2013).  https://doi.org/10.1016/j.msea.2013.06.018 CrossRefGoogle Scholar
  50. 50.
    S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, V.K. Iyer, An investigation on flowability and compressibility of AA 6061100-x-x wt% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying. Powder Technol. 201, 70–82 (2010).  https://doi.org/10.1016/j.powtec.2010.03.013 CrossRefGoogle Scholar
  51. 51.
    P. Burke, G.J. Kipouros, Development of magnesium powder metallurgy AZ31 alloy using commercially available powders. High Temp. Mater. Process. 30, 51–61 (2011).  https://doi.org/10.1515/HTMP.2011.007 CrossRefGoogle Scholar
  52. 52.
    R. Anish, M.S. Pragash, G.R. Singh, Development and characterization of AZ31B Mg alloy using powder metallurgy technique followed by hot extrusion. Adv. Mater. Res. 984–985, 124–128 (2014).  https://doi.org/10.4028/www.scientific.net/AMR.984-985.124 CrossRefGoogle Scholar
  53. 53.
    J. Syarif, Z. Sajuri, Z. Zulkoffli, Fabrication of AZ61 magnesium alloy from a pre-alloyed powder using PM process, in Engineering Postgraduate Conference, pp. 1–13 (2008)Google Scholar
  54. 54.
    ASTM International, ASTM B94-13:Standard Specification for Magnesium-Alloy Die Castings (ASTM International, West Conshohocken, 2013), pp. 1–6.  https://doi.org/10.1520/b0094-13.2 CrossRefGoogle Scholar
  55. 55.
    A.P. Sekhar, S. Nandy, K. Kumar Ray, D. Das, Hardness—yield strength relation of Al–Mg–Si alloys. IOP Conf. Ser. Mater. Sci. Eng. (2018).  https://doi.org/10.1088/1757-899x/338/1/012011 CrossRefGoogle Scholar
  56. 56.
    M. Tiryakioğlu, J.S. Robinson, M.A. Salazar-Guapuriche, Y.Y. Zhao, P.D. Eason, Hardness–strength relationships in the aluminum alloy 7010. Mater. Sci. Eng. A 631, 196–200 (2015).  https://doi.org/10.1016/j.msea.2015.02.049 CrossRefGoogle Scholar
  57. 57.
    M. Tiryakioğlu, On the relationship between Vickers hardness and yield stress in Al–Zn–Mg–Cu Alloys. Mater. Sci. Eng. A 633, 17–19 (2015).  https://doi.org/10.1016/j.msea.2015.02.073 CrossRefGoogle Scholar
  58. 58.
    C. Caceres, J. Griffiths, A. Pakdel, C. Davidson, Microhardness mapping and the hardness–yield strength relationship in high-pressure diecast magnesium alloy AZ91. Mater. Sci. Eng. A. 402, 258–268 (2005).  https://doi.org/10.1016/j.msea.2005.04.042 CrossRefGoogle Scholar
  59. 59.
    F. Khodabakhshi, M. Haghshenas, H. Eskandari, B. Koohbor, Hardness–strength relationships in fine and ultra-fine grained metals processed through constrained groove pressing. Mater. Sci. Eng. A 636, 331–339 (2015).  https://doi.org/10.1016/j.msea.2015.03.122 CrossRefGoogle Scholar
  60. 60.
    H.Y. Wang, Z.P. Yu, L. Zhang, C.G. Liu, M. Zha, C. Wang, Q.C. Jiang, Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process. Sci. Rep. 5, 1–9 (2015).  https://doi.org/10.1038/srep17100 CrossRefGoogle Scholar
  61. 61.
    X. Wang, M. Wu, W. Ma, Y. Lu, S. Yuan, Achieving superplasticity in AZ31 magnesium alloy processed by hot extrusion and rolling. J. Mater. Eng. Perform. 25, 64–67 (2016).  https://doi.org/10.1007/s11665-015-1826-1 CrossRefGoogle Scholar
  62. 62.
    ASTM International, ASTM B91-17: Standard Specification for Magnesium-Alloy Forgings (ASTM International, West Conshohocken, 2017), pp. 1–5.  https://doi.org/10.1520/c0139-14.2 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de IngenieríaUniversidad de Antioquia UdeAMedellínColombia
  2. 2.Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de IngenieríasUniversidad de MedellínMedellínColombia
  3. 3.Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño IndustrialUniversidad Pontificia BolivarianaMedellínColombia

Personalised recommendations