Microstructure and Wear Properties of Cu–La2O3 Composites Prepared by Spark Plasma Sintering

  • Runguo ZhengEmail author
  • Nana Li


The Cu–La2O3 composite was prepared by internal oxidation method. The friction and wear behavior was examined under different applied load and sliding velocity according to ASTM G99 standard. The results showed the size of La2O3 particles was about 150 nm, which were homogeneous distributed in the Cu matrix. The mean size of Cu grains in the Cu–1.32 wt% La2O3 composite decreased by 60% compared with that of pure Cu. The ultimate tensile strength of the Cu–1.32 wt% La2O3 composite was 328 MPa. The dominant strengthening mechanisms were the grain size strengthening and thermal mismatch strengthening. The wear rate of Cu–1.32 wt% La2O3 composites was lower than that of pure copper and it increased with the increase of applied load and sliding velocity. The mild to severe wear transition appeared at different load and velocity. The wear mechanisms were abrasive wear and oxidative wear in mild wear. However, it changed to plastic deformation and delamination wear in severe wear.


Spark plasma sintering Cu–La2O3 composite Wear mechanism Delamination wear 



This research was funded by the National Natural Science Foundation of China [Grant Number 51604075].


  1. 1.
    X.C. Ma, G.Q. He, D.H. He, C.S. Chen, Z.F. Hu, Wear 265, 1087–1092 (2008)CrossRefGoogle Scholar
  2. 2.
    D.H. He, R. Manory, H. Sinkis, Wear 239, 10–20 (2000)CrossRefGoogle Scholar
  3. 3.
    I. Yasar, A. Canakci, F. Arslan, Tribol. Int. 40, 1381–1386 (2007)CrossRefGoogle Scholar
  4. 4.
    V. Koti, R. George, P.G. Koppad, K.V.S. Murthy, A. Shakiba, Mater. Res. Express 5, 095607 (2018)CrossRefGoogle Scholar
  5. 5.
    H.M. Mallikarjuna, C.S. Ramesh, P.G. Koppad, R. Keshavamurthy, K.T. Kashyap, Trans. Nonferrous Met. Soc. China 26, 3170–3182 (2016)CrossRefGoogle Scholar
  6. 6.
    S.C. Tjong, K.C. Lau, Mater. Lett. 43, 274–280 (2000)CrossRefGoogle Scholar
  7. 7.
    G. Celebi Efe, M. Ipek, S. Zeytin, C. Bindal, Compos. B Eng. 43, 1813–1822 (2012)CrossRefGoogle Scholar
  8. 8.
    C.B. Lin, Z.-C. Chang, Y.H. Tung, Y.-Y. Ko, Wear 270, 382–394 (2011)CrossRefGoogle Scholar
  9. 9.
    T. Larionova, T. Koltsova, Y. Fadin, O. Tolochko, Wear 319, 118–122 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Han, J. Li, N. Zhao, C. Shi, E. Liu, F. He, L. Ma, Q. Li, C. He, Powder Technol. 321, 66–73 (2017)CrossRefGoogle Scholar
  11. 11.
    P.G. Koppad, K.T. Kashyap, V. Shrathinth, T.A. Shetty, R.G. Koppad, Mater. Sci. Technol. 29, 605–609 (2013)CrossRefGoogle Scholar
  12. 12.
    M.R. Rahul, R. Keshavamurthy, P.G. Koppad and C.P.S. Prakash, Int. J. Appl. Eng. Res. 10, 3803–3806 (2015)Google Scholar
  13. 13.
    F. Qiu, X. Duan, B. Dong, H. Yang, J. Lu, X. Li, Materials 11 (2018).
  14. 14.
    M. Barmouz, P. Asadi, M.K. Besharati Givi, M. Taherishargh, Mater. Sci. Eng. A 528, 1740–1749 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Fathy, F. Shehata, M. Abdelhameed, M. Elmahdy, Mater. Des. 36, 100–107 (2012)CrossRefGoogle Scholar
  16. 16.
    R. Sule, P.A. Olubambi, I. Sigalas, J.K.O. Asante, J.C. Garrett, Powder Technol. 258, 198–205 (2014)CrossRefGoogle Scholar
  17. 17.
    W. Zein Eddine, P. Matteazzi, J.-P. Celis, Wear 297, 762–773 (2013)CrossRefGoogle Scholar
  18. 18.
    H. Zhuo, J. Tang, N. Ye, Mater. Sci. Eng. A 584, 1–6 (2013)CrossRefGoogle Scholar
  19. 19.
    F. Mo, Y. Feng, Y. Chen, Y. Wang, G. Qian, Y. Dou, X. Zhang, J. Rare Earths 33, 327–333 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Ren, Z. Peng, C. Wang, H. Miao, Ceram. Int. 41, 14811–14818 (2015)CrossRefGoogle Scholar
  21. 21.
    M.R. Akbarpour, E. Salahi, F.A. Hesari, A. Simchi, H.S. Kim, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 572, 83–90 (2013)CrossRefGoogle Scholar
  22. 22.
    Z. Zhang, D. Chen, Scr. Mater. 54, 1321–1326 (2006)CrossRefGoogle Scholar
  23. 23.
    Y. Kobayashi, J. Takahashi, K. Kawakami, Scr. Mater. 67, 854–857 (2012)CrossRefGoogle Scholar
  24. 24.
    H.M. Mallikarjuna, C.S. Ramesh, P.G. Koppad, R. Keshavamurthy, D. Sethuram, Vacuum 145, 320–333 (2017)CrossRefGoogle Scholar
  25. 25.
    V. Rajkovic, D. Bozic, J. Stasic, H. Wang, M.T. Jovanovic, Powder Technol. 268, 392–400 (2014)CrossRefGoogle Scholar
  26. 26.
    M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, H.S. Kim, A. Simchi, Mater. Des. 52, 881–887 (2013)CrossRefGoogle Scholar
  27. 27.
    H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Acta Mater. 61, 2769–2782 (2013)CrossRefGoogle Scholar
  28. 28.
    P.G. Koppad, H.R. Aniruddha Ram, K.T. Kashyap, J. Alloys Compd. 549, 82–87 (2013)CrossRefGoogle Scholar
  29. 29.
    S.F. Moustafa, S.A. El-Badry, A.M. Sanad, B. Kieback, Wear 253, 699–710 (2002)CrossRefGoogle Scholar
  30. 30.
    A.T. Alpas, J. Zhang, Scr. Metall. Mater. 26, 505–509 (1992)CrossRefGoogle Scholar
  31. 31.
    J. An, W. Sun, X. D. Niu, Tribol. Lett. 65 (2017).
  32. 32.
    Q. Chen, K. Li, Y. Liu, Z. Zhao, K. Tao, Q. Zhu, J. Mater. Res. 32, 2161–2168 (2017)CrossRefGoogle Scholar
  33. 33.
    J.M. Wu, S.L. Zheng, Z.Z. Li, Y.W. Zeng, Wear 232, 25–30 (1999)CrossRefGoogle Scholar
  34. 34.
    S.C. Lim, M.F. Ashby, Acta Metall. 35, 1–24 (1987)CrossRefGoogle Scholar
  35. 35.
    F. Labib, H.M. Ghasemi, R. Mahmudi, Wear 348–349, 69–79 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.School of Resources and MaterialsNortheastern University at QinhuangdaoQinhuangdaoChina
  3. 3.Key Laboratory of Advanced Metal Materials and Forming Technology in QinhuangdaoQinhuangdaoChina

Personalised recommendations