Advertisement

Mechanical Properties of Aluminium Metal Matrix Nanocomposites Manufactured by Assisted-Flake Powder Thixoforming Process

  • Saud M. AlmotairyEmail author
  • A. Fadavi Boostani
  • M. Hassani
  • D. Wei
  • Z. Y. JiangEmail author
Article
  • 57 Downloads

Abstract

This study discusses the superior effect of thixoforming process on enhancing the tensile properties of aluminium matrix composite produced using flake metallurgy route. The flake metallurgy process was utilised to manufacture aluminium matrix composites followed by thixoforming process. Microstructural investigations carried out using transmission electron microscope have shown the synergic effect of thixoforming process on rendering uniform distribution of SiC nanoparticles associated with lower porosity content. X-ray diffraction characterisations have revealed the promising effect of uniform dispersion of SiC nanoparticles on restricting the grain growth of aluminium matrix within nanoscale regime (90 nm) even at high semi-solid thixoforming temperatures (575 °C). The achieved results of tensile tests have shown a profound effect of flake metallurgy of aluminium powder through dual speed ball milling. These results are higher than those achieved by low speed and high speed even with higher SiC content. This was attributed to the uniform confinement of SiC nanoparticles within the samples produced using flake-assisted forming process compared to the ones manufactured using ball milling-assisted processes.

Graphic abstract

Keywords

Thixoforming Metal matrix composites Mechanical properties Powder metallurgy Ball milling speed 

Notes

Acknowledgements

The first author extends his gratefulness for receiving scholarship as part of The Custodian of the two Holy Mosques' Overseas Scholarship Program.

References

  1. 1.
    N. Selvakumar, B. Gnanasundarajayaraja, P. Rajeshkumar, Enhancing the properties of Al–WC nanocomposites using liquid metallurgy. Exp. Tech. 40, 129–135 (2016)CrossRefGoogle Scholar
  2. 2.
    N. Chawla, Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites. Adv. Eng. Mater. 3, 357–370 (2001)CrossRefGoogle Scholar
  3. 3.
    M.K. Akbari, S. Rajabi, K. Shirvanimoghaddam, H.R. Baharvandi, Wear and friction behavior of nanosized TiB2 and TiO2 particle-reinforced casting A356 aluminum nanocomposites: a comparative study focusing on particle capture in matrix. J. Compos. Mater. 49, 3665–3681 (2015)CrossRefGoogle Scholar
  4. 4.
    M.K. Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. (1980–2015) 66, 150–161 (2015)CrossRefGoogle Scholar
  5. 5.
    S.K. Thandalam, S. Ramanathan, S. Sundarrajan, Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4) reinforced metal matrix composites (MMCs): a review. J. Mater. Res. Technol. 4, 333–347 (2015)CrossRefGoogle Scholar
  6. 6.
    J.J. Grácio, C.R. Picu, G. Vincze, N. Mathew, T. Schubert, A. Lopes et al., Mechanical behavior of Al–SiC nanocomposites produced by ball milling and spark plasma sintering. Metall. Mater. Trans. A 44, 5259–5269 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Hashim, L. Looney, M.S.J. Hashmi, Particle distribution in cast metal matrix composites—part I. J. Mater. Process. Technol. 123, 251–257 (2002)CrossRefGoogle Scholar
  8. 8.
    J. Hashim, L. Looney, M.S.J. Hashmi, Particle distribution in cast metal matrix composites—part II. J. Mater. Process. Technol. 123, 258–263 (2002)CrossRefGoogle Scholar
  9. 9.
    I.S. El-Mahallawi, Y. Shash, K. Eigenfeld, T.S. Mahmoud, R.M. Ragaie, A.Y. Shash et al., Influence of nanodispersions on strength–ductility properties of semisolid cast A356 Al alloy. Mater. Sci. Technol. 26, 1226–1231 (2013)CrossRefGoogle Scholar
  10. 10.
    J.-C. Lee, J.-Y. Byun, S.-B. Park, H.-I. Lee, Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite. Acta Mater. 46, 1771–1780 (1998)CrossRefGoogle Scholar
  11. 11.
    K. Morsi, A. Esawi, Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders. J. Mater. Sci. 42, 4954–4959 (2007)CrossRefGoogle Scholar
  12. 12.
    M. Gelbstein, I. Edry, N. Froumin, N. Frage, Interfacial chemical interactions in the (alumina/graphite/Al alloys) system: thermodynamic modeling and experimental results. Metall. Mater. Trans. A 40, 932–936 (2009)CrossRefGoogle Scholar
  13. 13.
    J.S. Benjamin, M.J. Bomford, Dispersion strengthened aluminum made by mechanical alloying. Metall. Trans. A 8, 1301–1305 (1977)CrossRefGoogle Scholar
  14. 14.
    L. Jiang, Z. Li, G. Fan, L. Cao, D. Zhang, The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50, 1993–1998 (2012)CrossRefGoogle Scholar
  15. 15.
    G. Fan, R. Xu, Z. Tan, D. Zhang, Z. Li, Development of flake powder metallurgy in fabricating metal matrix composites: a review. Acta Metall. Sin. (Engl. Lett.) 27, 806–815 (2014)CrossRefGoogle Scholar
  16. 16.
    L. Jiang, Z. Li, G. Fan, L. Cao, D. Zhang, Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scr. Mater. 66, 331–334 (2012)CrossRefGoogle Scholar
  17. 17.
    Z. Li, L. Jiang, G. Fan, Y. Xu, D. Zhang, Z. Chen et al., High volume fraction and uniform dispersion of carbon nanotubes in aluminium powders. Micro Nano Lett. 5, 379–381 (2010)CrossRefGoogle Scholar
  18. 18.
    H.J. Choi, J.H. Shin, D.H. Bae, The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites. Compos. A Appl. Sci. Manuf. 43, 1061–1072 (2012)CrossRefGoogle Scholar
  19. 19.
    Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, Z.Y. Ma, Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Compos. A Appl. Sci. Manuf. 43, 2161–2168 (2012)CrossRefGoogle Scholar
  20. 20.
    S. Deepak Kumar, A. Mandal, M. Chakraborty, On the age hardening behavior of thixoformed A356–5TiB2 in-situ composite. Mater. Sci. Eng. A 636, 254–262 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Deepak Kumar, A. Mandal, M. Chakraborty, Effect of thixoforming on the microstructure and tensile properties of A356 alloy and A356–5TiB2 in-situ composite. Trans. Indian Inst. Met. 68, 123–130 (2015)CrossRefGoogle Scholar
  22. 22.
    S.-H. Hong, D.-W. Lee, B.-K. Kim, Manufacturing of aluminum flake powder from foil scrap by dry ball milling process. J. Mater. Process. Technol. 100, 105–109 (2000)CrossRefGoogle Scholar
  23. 23.
    S. Almotairy, A.F. Boostani, M. Hassani, D. Wei, Z. Jiang, Effect of hot isostatic pressing on the mechanical properties of aluminium metal matrix nanocomposites produced by dual speed ball milling (Work in publish) Google Scholar
  24. 24.
    X. Hao, H. Zhang, R. Zheng, Y. Zhang, K. Ameyama, C. Ma, Effect of mechanical alloying time and rotation speed on evolution of CNTs/Al-2024 composite powders. Trans. Nonferrous Met. Soc. China 24, 2380–2386 (2014)CrossRefGoogle Scholar
  25. 25.
    L. Lu, M.O. Lai, C.W. Ng, Enhanced mechanical properties of an Al based metal matrix composite prepared using mechanical alloying. Mater. Sci. Eng. A 252, 203–211 (1998)CrossRefGoogle Scholar
  26. 26.
    A. Nieto, A. Bisht, D. Lahiri, C. Zhang, A. Agarwal, Graphene reinforced metal and ceramic matrix composites: a review. Int. Mater. Rev. 62, 241–302 (2016)CrossRefGoogle Scholar
  27. 27.
    S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor et al., Graphene–aluminum nanocomposites. Mater. Sci. Eng. A 528, 7933–7937 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia
  2. 2.Center of Excellence for Research in Engineering Materials (CEREM)King Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Materials Science and Engineering, Majlesi BranchIslamic Azad University, MajlesiIsfahanIran
  4. 4.Department of Mechanical Engineering, Najafabad BranchIslamic Azad UniversityNajafabadIran
  5. 5.School of Electrical, Mechanical and Mechatronic SystemsUniversity of Technology SydneySydneyAustralia

Personalised recommendations