Improved Hardness, Wear and Corrosion Resistance of Inconel 718 Treated by Hot Wall Plasma Nitriding

  • Arash ManieeEmail author
  • Farzad MahboubiEmail author
  • Reza Soleimani


In this study, Inconel 718 superalloy was treated using the hot wall plasma nitriding (HWPN) technique. This treatment was performed in 75% N2 + 25% H2 atmosphere at temperatures 400, 450, and 500 °C for 6 h. Through this process, the chamber wall temperature was 400 °C. X-ray diffraction, scanning electron microscopy, and micro-hardness measurement were used to characterize the modified samples. The pin-on-disk method was used to examine the wear behavior of the samples. Potentiodynamic polarization and electrochemical impedance spectroscopy in 3.5 wt% NaCl solution were utilized to study corrosion characteristics. The results showed that the nitrided layers with appropriate thickness still form at moderate treatment temperature. Moreover, surface hardness increased up to about four times after HWPN (at 500 °C). Nitriding at 450 °C produced a higher corrosion resistance, a considerable increase in surface hardness, improved wear resistance, and the most expanded fcc-phase (γN) among all samples.

Graphic Abstract


Hot wall plasma nitriding Moderate temperature Wear Corrosion resistance Inconel 718 superalloy 



  1. 1.
    A. Kruk, A.M. Wusatowska-Sarnek, M. Ziętara, K. Jemielniak, Z. Siemiątkowski, A. Czyrska-Filemonowicz, Met. Mater. Int. 24, 1036–1045 (2018)CrossRefGoogle Scholar
  2. 2.
    H. Zhang, H. Qin, Z. Ren, J. Zhao, X. Hou, G.L. Doll, Y. Dong, C. Ye, Surf. Coat. Technol. 330, 10–16 (2017)CrossRefGoogle Scholar
  3. 3.
    V. Singh, E.I. Meletis, Surf. Coat. Technol. 201, 1093–1101 (2006)CrossRefGoogle Scholar
  4. 4.
    M.H. Ghasemi, B. Ghasemi, H.R. Mohamadian Semnani, Met. Mater. Int. 25, 1008–1018 (2019)CrossRefGoogle Scholar
  5. 5.
    T. Borowski, A. Brojanowska, M. Kost, H. Garbacz, T. Wierzchon, Vacuum 83, 1489–1493 (2009)CrossRefGoogle Scholar
  6. 6.
    B.M. Caruta, Thin Films and Coatings: New Research (Nova Publishers, New York, 2005)Google Scholar
  7. 7.
    A.R. Mashreghi, S.M.Y. Soleimani, S. Saberifar, Mater. Des. 46, 532–538 (2013)CrossRefGoogle Scholar
  8. 8.
    Y. Li, H. Xu, F. Zhu, L. Wang, Mater. Lett. 128, 231–234 (2014)CrossRefGoogle Scholar
  9. 9.
    C. Leroy, T. Czerwiec, C. Gabet, T. Belmonte, H. Michel, Surf. Coat. Technol. 142, 241–247 (2001)CrossRefGoogle Scholar
  10. 10.
    S. Wang, W. Cai, J. Li, W. Wei, J. Hu, Mater. Lett. 105, 47–49 (2013)CrossRefGoogle Scholar
  11. 11.
    C. Sudha, R. Anand, V.T. Paul, S. Saroja, M. Vijayalakshmi, Surf. Coat. Technol. 226, 92–99 (2013)CrossRefGoogle Scholar
  12. 12.
    J. Wang, G. Zhang, J. Sun, Y. Bao, L. Zhuang, H. Ning, Surf. Coat. Technol. 200, 6666–6670 (2006)CrossRefGoogle Scholar
  13. 13.
    A. Maniee, F. Mahboubi, R. Soleimani, Mater. Des. 60, 599–604 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Jing, W. Jun, G. Tan, X. Ji, F. Hongyuan, ISIJ Int. 56, 1076–1082 (2016)CrossRefGoogle Scholar
  15. 15.
    R.G. Bayer, Mechanical Wear Fundamentals and Testing (Marcel Dekker, New York, 2004)Google Scholar
  16. 16.
    M. Ebrahimi, M.H. Sohi, A.H. Raouf, F. Mahboubi, Surf. Coat. Technol. 205, 261–266 (2010)CrossRefGoogle Scholar
  17. 17.
    Y.C. Sharma, R. Kumar, V. Vidyasagar, D. Bhardwaj, Mater. Res. Express 6, (2018)CrossRefGoogle Scholar
  18. 18.
    F. Borgioli, E. Galvanetto, T. Bacci, Vacuum 127, 51–60 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Chollet, L. Pichon, J. Cormier, J.B. Dubois, P. Villechaise, M. Drouet, A. Declemy, C. Templier, Surf. Coat. Technol. 235, 318–325 (2013)CrossRefGoogle Scholar
  20. 20.
    D.L. Williamson, J.A. Davis, P.J. Wilbur, Surf. Coat. Technol. 103, 178–184 (1998)CrossRefGoogle Scholar
  21. 21.
    F. Borgioli, E. Galvanetto, T. Bacci, Corros. Sci. 136, 352–365 (2018)CrossRefGoogle Scholar
  22. 22.
    A.N. Allenstein, C.M. Lepienski, A.J.A. Buschinelli, S.F. Brunatto, Appl. Surf. Sci. 277, 15–24 (2013)CrossRefGoogle Scholar
  23. 23.
    H.R. Abedi, M. Salehi, M. Yazdkhasti, A. Hemmasian-E, Vacuum 85, 443–447 (2010)CrossRefGoogle Scholar
  24. 24.
    F. Borgioli, A. Fossati, E. Galvanetto, T. Bacci, G. Pradelli, Surf. Coat. Technol. 200, 5505–5513 (2006)CrossRefGoogle Scholar
  25. 25.
    Y. Li, Y. He, J. Xiu, W. Wang, Y. Zhu, B. Hu, Surf. Coat. Technol. 329, 184–192 (2017)CrossRefGoogle Scholar
  26. 26.
    K.L. Dahm, K.T. Short, G.A. Collins, Wear 263, 625–628 (2007)CrossRefGoogle Scholar
  27. 27.
    H. Dong, Int. Mater. Rev. 55, 65–98 (2010)CrossRefGoogle Scholar
  28. 28.
    H.E.L. Ramos, A.R.F. Jr, E.A. Vieira, J. Mater. Res. Technol. 8, 1694–1700 (2019)CrossRefGoogle Scholar
  29. 29.
    J.P. Riviere, P. Meheust, J.A. Garcia, R. Martınez, R. Sanchez, R. Rodrıguez, Surf. Coat. Technol. 158, 295–300 (2002)CrossRefGoogle Scholar
  30. 30.
    K.H. Lo, C.H. Shek, J.K.L. Lai, Mater. Sci. Eng. R 65, 39–104 (2009)CrossRefGoogle Scholar
  31. 31.
    J. Alphonsa, V.S. Raja, S. Mukherjee, Corros. Sci. 100, 121–132 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Nishimoto, T. Fukube, T. Maruyama, Surf. Coat. Technol. In Press, Corrected Proof (2018)Google Scholar
  33. 33.
    I. Ahamad, R. Prasad, M.A. Quraishi, Corros. Sci. 52, 933–942 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Mining and Metallurgical EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.School of Metallurgy and Materials EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations