Resistance to Pit Formation and Pit Growth for Different Tempers of AA2024 Aluminium Alloy in Presence of Benzotriazole

  • Bore JegdićEmail author
  • Biljana Bobić
  • Maja Stevanović
  • Marija Mihailović
  • Dunja Daničić
  • Jovanka Kovačina
  • Bojana Radojković


The paper analyses the corrosion behaviour of both naturally and artificially aged AA2024 aluminium alloy in NaCl solution in the presence of the corrosion inhibitor benzotriazole (BTA). The differences between these two aging tempers in terms of resistance to general corrosion are explained as well as the differences in terms of pit formation and pit growth. Based on the values of the polarisation resistance and the corrosion current density, the general corrosion resistance of the alloy is determined in the absence and in the presence of BTA. The resistance to pit formation and pit growth is determined on the basis of the polarisation measurements results. Scanning electron microscopy confirmed the expected differences in the appearance and size of the pits formed in naturally aged and artificially aged alloy. In the presence of the corrosion inhibitor BTA, for both aging tempers of the alloy, the corrosion resistance is significantly higher compared to the resistance in the solution without the inhibitor. The value of the polarisation resistance for both aging tempers increases over time. However, at the same time, the value of the constant phase element increases as well. An explanation for this phenomenon is provided. The calculated average value of the thickness of the adsorbed inhibitor layer on the surface of the aluminium alloy is in accordance with the inhibitor protective ability for both aging tempers.

Graphic Abstract


Aluminium alloys Microstructure Pitting corrosion Electrochemical impedance spectroscopy Scanning electron microscopy 



The Ministry of Education, Science and Technological Development of the Republic of Serbia has supported this work financially through TR 34028, TR 35021 and TR 34002 Projects.


  1. 1.
    J.E. Hatch, Aluminum Properties and Physical Metallurgy (ASM International, Ohio, 1984), pp. 351–378Google Scholar
  2. 2.
    J.R. Davis, Corrosion of Aluminum and Aluminum Alloys (ASM International, Ohio, 1999), pp. 25–43Google Scholar
  3. 3.
    V.S. Sinjavskij, V.D. Valjkov, V.D. Kalinin, Corrosion and Protection of Aluminium alloys (Metallurgia, Moskva, 1986), pp. 226–37. (in Russian)Google Scholar
  4. 4.
    P.G. Fox, G. Lowis, P.J. Boden, Corros. Sci. 19, 457 (1979)CrossRefGoogle Scholar
  5. 5.
    M. Finšgar, I. Milošev, Corros. Sci. 52, 2737 (2010)CrossRefGoogle Scholar
  6. 6.
    M.L. Zheludkevich, K.A. Yasakau, S.K. Poznyak, M.G.S. Ferreira, Corros. Sci. 47, 3368 (2005)CrossRefGoogle Scholar
  7. 7.
    G. Williams, A.J. Coleman, H.N. McMurray, Electrochim. Acta 55, 5947 (2010)CrossRefGoogle Scholar
  8. 8.
    I. Recloux, F. Andreatta, M.-E. Druart, L.B. Coelho, C. Cepek, D. Cossement, L. Fedrizzi, M.-G. Olivier, J. Alloys Compd. 735, 2512 (2018)CrossRefGoogle Scholar
  9. 9.
    V. Palanivel, Y. Huang, W.J. van Ooij, Prog. Org. Coat. 53, 153 (2005)CrossRefGoogle Scholar
  10. 10.
    I. Recloux, M. Mouanga, M.-E. Druart, Y. Paint, M.-G. Olivier, Appl. Surf. Sci. 346, 124 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Feng, Y.F. Cheng, Chem. Eng. J. 315, 537 (2017)CrossRefGoogle Scholar
  12. 12.
    K. Kamburova, N. Boshkova, N. Boshkov, T. Radeva, Colloids Surf. A Physicochem. Eng. Asp. 499, 24 (2016)CrossRefGoogle Scholar
  13. 13.
    N. Birbilis, R.G. Buchheit, J. Electrochem. Soc. 152, B140 (2005)CrossRefGoogle Scholar
  14. 14.
    C. Luo, Role of Microstructure on Corrosion Control of AA2024-T3 Aluminium Alloy University of Manchester (Faculty of Engineering and Physical Sciences, Manchester, 2011), pp. 59–76Google Scholar
  15. 15.
    A. Conde, J. De Damborenea, Corros. Sci. 39, 295 (1997)CrossRefGoogle Scholar
  16. 16.
    V. Guillaumin, G. Mankowski, Corros. Sci. 41, 421 (1999)CrossRefGoogle Scholar
  17. 17.
    K.S. Ghosh, M. Hilal, S. Bose, Trans. Nonferrous Met. Soc. China 23, 3215 (2013)CrossRefGoogle Scholar
  18. 18.
    K.D. Ralston, N. Birbilis, M.K. Cavanaugh, M. Weyland, B.C. Muddle, R.K.W. Marceau, Electrochim. Acta 55, 7834 (2010)CrossRefGoogle Scholar
  19. 19.
    M.B. Jensen, A. Guerard, D.E. Tallman, G.P. Bierwagen, J. Electrochem. Soc. 155, C324 (2008)CrossRefGoogle Scholar
  20. 20.
    L. Lacroix, L. Ressier, C. Blanc, G. Mankowski, J. Electrochem. Soc. 155, C131 (2008)CrossRefGoogle Scholar
  21. 21.
    N. Birbilis, R.G. Buchheit, J. Electrochem. Soc. 155, C117 (2008)CrossRefGoogle Scholar
  22. 22.
    Y. Yoon, R.G. Buchheit, J. Electrochem. Soc. 153, B151 (2006)CrossRefGoogle Scholar
  23. 23.
    G.O. Ilevbare, O. Schneider, R.G. Kelly, J.R. Scully, J. Electrochem. Soc. 151, C453 (2004)CrossRefGoogle Scholar
  24. 24.
    O. Schneider, G.O. Ilevbare, J.R. Scully, R.G. Kelly, J. Electrochem. Soc. 151, C465 (2004)CrossRefGoogle Scholar
  25. 25.
    M.K. Cavanaugh, J.C. Li, N. Birbilis, R.G. Buchheit, J. Electrochem. Soc. 161, C535 (2014)CrossRefGoogle Scholar
  26. 26.
    Y.F. Qin, S.Q. Wang, J. Electrochem. Soc. 162, C503 (2015)CrossRefGoogle Scholar
  27. 27.
    T. Suter, R.C. Alkire, J. Electrochem. Soc. 148, B36 (2001)CrossRefGoogle Scholar
  28. 28.
    M.O. Speidel, M.V. Hyatt, in Advances in Corrosion Science and Technology, vol. 2, ed. by M.G. Fontana, R.W. Staehle (Plenum Press, New York, 1972), p. 115CrossRefGoogle Scholar
  29. 29.
    B.V. Jegdić, J.B. Bajat, J.P. Popić, S.I. Stevanović, V.B. Mišković-Stanković, Corros. Sci. 53, 2872 (2011)CrossRefGoogle Scholar
  30. 30.
    B.V. Jegdić, L.S. Živković, J.P. Popić, J. Rogan, J.B. Bajat, V.B. Mišković-Stanković, Mater. Corros. 67, 1173 (2016)CrossRefGoogle Scholar
  31. 31.
    L.S. Živković, J.P. Popić, B.V. Jegdić, Z. Dohčević-Mitrović, J.B. Bajat, V.B. Mišković-Stanković, Surf. Coat. Technol. 240, 327 (2014)CrossRefGoogle Scholar
  32. 32.
    S.S. Kim, W.J. Lee, S.I. Pyun, D.R. Kim, Met. Mater. 5, 583 (1999)CrossRefGoogle Scholar
  33. 33.
    T. Radetić, M. Popović, B. Jegdić, E. Romhanji, Mater. Corros. 67, 867 (2016)CrossRefGoogle Scholar
  34. 34.
    A. Boag, A.E. Hughes, N.C. Wilson, A. Torpy, C.M. MacRae, A.M. Glenn, T.H. Muster, Corros. Sci. 51, 1565 (2009)CrossRefGoogle Scholar
  35. 35.
    I. Recloux, F. Andreatta, M.-E. Druart, L.B. Coelho, C. Cepek, D. Cossement, L. Fedrizzi, M.-G. Olivier, J. Alloys Compd. 735, 2512 (2018)CrossRefGoogle Scholar
  36. 36.
    P. Rodič, I. Milošev, J. Electrochem. Soc. 163, C85 (2016)CrossRefGoogle Scholar
  37. 37.
    E. McCafferty, Introduction to Corrosion Science (Springer, New York, 2010), pp. 263–313CrossRefGoogle Scholar
  38. 38.
    F. Mansfeld, J.C.S. Fernandes, Corros. Sci. 34, 2105 (1993)CrossRefGoogle Scholar
  39. 39.
    H. Shih, F. Mansfeld, Corrosion 45, 610 (1989)CrossRefGoogle Scholar
  40. 40.
    X. Wang, J. Wang, C. Fu, Trans. Nonferrous Met. Soc. China 24, 3907 (2014)CrossRefGoogle Scholar
  41. 41.
    G.S. Frankel, in Active Protective Coatings, New-Generation Coatings for Metals, Springer Series in Materials Science, vol. 233, ed. by A.E. Hughes, J.M.C. Mol, M.L. Zheludkevich, R.G. Buchheit (Springer, Dordrecht, 2016), pp. 17–32CrossRefGoogle Scholar
  42. 42.
    B. Jegdić, B. Bobić, B. Gligorijević, V. Mišković-Stanković, Mater. Protect. 55, 387 (2014)Google Scholar
  43. 43.
    F. Mansfeld, in Advances in Corrosion Science and Technology, vol. 6, ed. by M.G. Fontana, R.W. Staehle (Plenum Press, New York, 1976), p. 163CrossRefGoogle Scholar
  44. 44.
    J.R. Galvele, S.M. de DeMicheli, Corros. Sci. 10, 795 (1970)CrossRefGoogle Scholar
  45. 45.
    G.O. Ilevbare, J.R. Scully, Corrosion 57, 134 (2001)CrossRefGoogle Scholar
  46. 46.
    F.E. Heakal, S. Haruyama, Corros. Sci. 20, 887 (1980)CrossRefGoogle Scholar
  47. 47.
    R. Babić, M. Metikoš-Huković, M. Lončar, Electrochim. Acta 44, 2413 (1999)CrossRefGoogle Scholar
  48. 48.
    L.B. Coelho, M. Mouanga, M.E. Druart, I. Recloux, D. Cossement, M.G. Olivier, Corros. Sci. 110, 143 (2016)CrossRefGoogle Scholar
  49. 49.
    L.B. Coelho, D. Cossement, M.G. Olivier, Corros. Sci. 130, 177 (2018)CrossRefGoogle Scholar
  50. 50.
    F. Batmanghelich, M.B. Hariri, S. Sharifi-Asl, Y. Yaghoubinezhad, G. Mortazavi, Y. Seo, Met. Mater. Int. 22, 609 (2016)CrossRefGoogle Scholar
  51. 51.
    Y.S. Kim, S.H. Kim, J.G. Kim, Met. Mater. Int. 21, 1013 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Institute for Chemistry, Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Innovation Centre of the Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations