Creep Failure and Damage Mechanism of Inconel 718 Alloy at 800–900 °C

  • Kai Chen
  • Jianxin Dong
  • Zhihao YaoEmail author



The creep behavior and damage mechanisms of 718 alloys were investigated at 800–900 °C in air. The fracture morphology and microstructure evolution were observed by optical, scanning and transmission electron microscope. Besides, the creep damage tolerance (λ) and creep strain evolution curve were also calculated. The results showed that the creep curves of 718 alloys at 800 or 850 °C consisted of primary and tertiary stages, while the steady-state region became apparent at 900 °C. The apparent creep activation energy of 718 alloy was in the range from 446.3 to 491.8 kJ/mol. The alloy presented ductile fracture at 800 °C due to the nucleation, growth and linkage of creep voids. However, the failure of alloys at 850 or 900 °C presented necking to a point due to the microstructure degradation. Further investigations showed the softening of materials and the loss of mechanical performance could be mainly attributed to the coarsening or decrease of strengthening precipitates. Above 850 °C, it was found that γ′ phases would dissolve into matrix and stress promoted the re-dissolution of γ′ phases or led to the break of δ phases. Moreover, the creep strain evolution curves indicated that 718 alloys kept a relative stable state at 800–900 °C when the strain fraction was below 1.

Graphic Abstract


Inconel 718 Creep failure Damage mechanism Microstructure degradation 



The authors would like to thankfully appreciate the support of this research from the National Natural Science Foundation of China (Grant No. 51771016, 51771017).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    X.Y. Qin, X.J. Yan, D.W. Huang, X.Y. Zhang, M.J. Qi, S. Yue, Evolution behavior of M23C6 carbides under different hot deformation conditions in alloy 602 CA. Met. Mater. Int. (2019). Google Scholar
  2. 2.
    D.C. Lv, D. McAllister, M.J. Mills, Y. Wang, Deformation mechanisms of D022 ordered intermetallic phase in superalloys. Acta. Mater. 118, 350–361 (2016)CrossRefGoogle Scholar
  3. 3.
    H.P. Wang, D. Liu, Y.Z. Shi, J.G. Wang, Y.H. Yang, L.X. Wang, W.D. Qin, Matrix-diffusion-controlled coarsening of the γ′ Phase in waspaloy. Met. Mater. Int. (2019). Google Scholar
  4. 4.
    Y.Q. Ning, S.B. Huang, M.W. Fu, J. Dong, Microstructural characterization, formation mechanism and fracture behavior of the needle δ phase in Fe–Ni–Cr type superalloys with high Nb content. Mater. Charact. 109, 36–42 (2015)CrossRefGoogle Scholar
  5. 5.
    R.W. Hayes, in Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives, ed. by E.A. Loria (The Minerals, Metals & Materials Society, Warrendale, PA,1991) pp. 549–562Google Scholar
  6. 6.
    M.C. Chaturvedi, Y.F. Han, in Proceedings of the International Symposium on Superalloys 718─Metallurgy and Applications, ed. by E. A. Loria EA (The Minerals, Metals & Materials Society, Warrendale, PA, 1989) pp. 489–498Google Scholar
  7. 7.
    X.D. Lu, J.H. Du, Q. Deng, J.Y. Zhuang, Stress rupture properties of GH4169 superalloy. J. Mater. Res. Technol. 3(2), 107–113 (2014)CrossRefGoogle Scholar
  8. 8.
    J.F. Radavich, G.E. Korth, High temperature degradation of alloy 718 after longtime exposures, in Superalloys 1992, in The Minerals, Metals & Materials Society, ed. by S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom (PA, Warrendale, 1992), pp. 497–505Google Scholar
  9. 9.
    A. Agnoli, C.L. Gall, J. Thebault, E. Marin, J. Cormier, Mechanical properties evolution of γ′/γ″ nickel-base superalloys during long-term thermal over-aging. Metall. Mater. Trans. A. 49(9), 4290–4300 (2018)CrossRefGoogle Scholar
  10. 10.
    Y.C. Lin, L.X. Yin, S.C. Luo, D.G. He, X.B. Peng, Effects of initial δ phase on creep behaviors and fracture characteristics of a nickel-based superalloy. Adv. Eng. Mater. 20, 1700820 (2018)CrossRefGoogle Scholar
  11. 11.
    T.W. Ni, J.X. Dong, Creep behaviors and mechanisms of Inconel718 and Allvac718plus. Mater. Sci. Eng. A. 700, 406–415 (2017)CrossRefGoogle Scholar
  12. 12.
    Z.H. Yao, M.C. Zhang, J.X. Dong, Stress rupture fracture model and microstructure evolution for Waspaloy. Metall. Mater. Trans. A. 44(7), 3084–3098 (2013)CrossRefGoogle Scholar
  13. 13.
    K. Chen, J.X. Dong, Z.H. Yao, T.W. Ni, M.Q. Wang, Creep performance and damage mechanism for Allvac 718Plus superalloy. Mater. Sci. Eng. A. 738, 308–322 (2018)CrossRefGoogle Scholar
  14. 14.
    X.G. You, Y. Tan, S. Shi, J. Yang, Y.N. Wang, J.Y. Li, Q.F. You, Effect of solution heat treatment on the precipitation behavior and strengthening mechanisms of electron beam smelted Inconel 718 superalloy. Mater. Sci. Eng. A. 689, 257–268 (2017)CrossRefGoogle Scholar
  15. 15.
    H.Y. Li, Y.H. Kong, G.S. Chen, L.X. Xie, S.G. Zhu, X. Sheng, Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy. Mater. Sci. Eng. A. 582, 368–373 (2013)CrossRefGoogle Scholar
  16. 16.
    W. Chen, M.C. Chaturvedi, The effect of grain boundary precipitates on the creep behavior of Inconel 718. Mater. Sci. Eng. A. 183, 81–89 (1994)CrossRefGoogle Scholar
  17. 17.
    X. Han, L.J. Wu, X. Hui, R.G. Liu, S.G. Wang, Z.L. Chen, Superplastic properties of Inconel 718. J. Mater. Process. Technol. 137, 17–20 (2003)CrossRefGoogle Scholar
  18. 18.
    Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, G. Liu, Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy. Mater. Des. 55, 949–957 (2014)CrossRefGoogle Scholar
  19. 19.
    L.J. Huang, F. Qi, L. Yu, L.X. Yu, F. Liu, W.R. Sun, Z.Q. Hu, Necking behavior and microstructural evolution during high strain rate superplastic deformation of IN718 superalloy. Mater. Sci. Eng. A. 634, 71–76 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Huang, P.L. Blackwell, Microstructure development and superplasticity in Inconel 718 sheet. Mater. Sci. Technol. 19, 461–466 (2003)CrossRefGoogle Scholar
  21. 21.
    W.J. Harrison, M.T. Whittaker, C. Deen, Creep behaviour of Waspaloy under non-constant stress and temperature. Mater. Res. Innov. 17(5), 323–326 (2013)CrossRefGoogle Scholar
  22. 22.
    W.G. Kim, J.Y. Park, I.M.W. Ekaputra, S.J. Kim, M.H. Kim, Y.W. Kim, Creep deformation and rupture behavior of Alloy 617. Eng. Fail. Anal. 58, 441–451 (2015)CrossRefGoogle Scholar
  23. 23.
    R.W. Hayes, R.R. Unocic, M. Nasrollahzadeh, Creep deformation of allvac 718Plus. Metall. Mater. Trans. A. 46, 218–228 (2015)CrossRefGoogle Scholar
  24. 24.
    B. Wilshire, M.T. Whittaker, The role of grain boundaries in creep strain accumulation. Acta. Mater. 57(14), 4115–4124 (2009)CrossRefGoogle Scholar
  25. 25.
    J.T. Guo, D. Ranucci, E. Picco, P.M. Strocchi, An investigation on the creep and fracture behavior of cast nickel-base superalloy IN738LC. Metall. Trans. A. 14A, 2329–2335 (1983)Google Scholar
  26. 26.
    M.E. Kassner, Fundamentals of creep in metals and alloys, 2nd edn. (Heinemann, Butterworth, 2015), pp. 1–12CrossRefGoogle Scholar
  27. 27.
    C.G. McKamey, C.A. Carmichael, W.D. Cao, R.L. Kennedy, Creep properties of phosphorus + boron-modified alloy 718. Scripta. Mater. 38(3), 485–491 (1998)CrossRefGoogle Scholar
  28. 28.
    D.H. Kim, J.H. Kim, J.W. Sa, Y.S. Lee, C.K. Park, S.I. Moon, Stress rupture characteristics of Inconel 718 alloy for ramjet combustor. Mater. Sci. Eng. A. 483–484, 262–265 (2008)CrossRefGoogle Scholar
  29. 29.
    G.A. Webster, B.J. Piearcey, An interpretation of the effects of stress and temperature on the creep properties of a nickel-base superalloy. Met. Sci. J. 1, 97–104 (1966)CrossRefGoogle Scholar
  30. 30.
    Y. Wang, W.Z. Shao, L. Zhen, C. Yang, X.M. Zhang, Tensile deformation behavior of superalloy 718 at elevated temperatures. J. Alloys. Compd. 471, 331–335 (2009)CrossRefGoogle Scholar
  31. 31.
    T. Sugahara, K. Martinolli, D.A.P. Reis, C.M. Neto, A.A. Couto, F.P. Neto, M.J.R. Barboza, Creep behavior of the inconel 718 superalloy. Defect. Diffus. Forum. 326–328, 509–514 (2012)CrossRefGoogle Scholar
  32. 32.
    F.R. Caliari, K.C.G. Candioto, A.A. Couto, C.Â. Nunes, D.A.P. Reis, Effect of double aging heat treatment on the short-term creep behavior of the Inconel 718. J. Mater. Eng. Perform. 25(6), 2307–2317 (2016)CrossRefGoogle Scholar
  33. 33.
    S.H. Zhang, H.Y. Zhang, M. Cheng, Tensile deformation and fracture characteristics of delta-processed Inconel 718 alloy at elevated temperature. Mater. Sci. Eng. A. 528, 6253–6258 (2011)CrossRefGoogle Scholar
  34. 34.
    J.J. Ruan, N. Ueshima, K. Oikawa, Phase transformations and grain growth behaviors in superalloy 718. J. Alloy. Compd. 737, 83–91 (2018)CrossRefGoogle Scholar
  35. 35.
    Y.C. Zhang, Z.G. Li, P.L. Nie, Y.X. Wu, Carbide and nitride precipitation during laser cladding of Inconel 718 alloy coatings. Opt. Laser. Technol. 52, 30–36 (2013)CrossRefGoogle Scholar
  36. 36.
    V. Beaubois, J. Huez, S. Coste, O. Brucelle, J. Lacaze, Short term precipitation kinetics of delta phase in strain free Inconel 718 alloy. Mater. Sci. Technol. 20, 1019–1026 (2004)CrossRefGoogle Scholar
  37. 37.
    S. Azadian, L.Y. Wei, F. Niklasson, R. Warren, Precipitation in spray-formed IN 718, In: Loria EA (ed) Proceedings of the international symposium on superalloys 718, 625, 706 and various derivatives. The Minerals, Metals & Materials Society, Warrendale, PA, 617–626 (2001).Google Scholar
  38. 38.
    W.C. Liu, Z.L. Chen, M. Yao, Effect of cold rolling on the precipitation behavior of δ phase in Inconel 718. Metall. Mater. Trans. A. 30, 31–40 (1999)CrossRefGoogle Scholar
  39. 39.
    Y. Huang, T.G. Langdon, The evolution of delta-phase in a superplastic Inconel 718 alloy. J. Mater. Sci. 42, 421–427 (2007)CrossRefGoogle Scholar
  40. 40.
    H.Y. Zhang, S.H. Zhang, M. Cheng, Z.X. Li, Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy. Mater. Charact. 61, 49–53 (2010)CrossRefGoogle Scholar
  41. 41.
    M.F. Ashby, B.F. Dyson, Creep damage mechanics and micromechanisms (Pergamon Press, Oxford, 1984), pp. 3–30Google Scholar
  42. 42.
    B. Wilshire, H. Burt, Damage evolution during creep of steels. Int. J. Pressure. Vessels. Piping. 85, 47–54 (2008)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Material Science and EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations