Advertisement

Characterization of Naturally Aged Iron Nanopowder Produced by Electrical Explosion of Wires

  • Olga B. NazarenkoEmail author
  • Alexander I. Sechin
  • Yuliya A. Amelkovich
Article
  • 19 Downloads

Abstract

Iron nanopowder obtained by electrical explosion of wires, passivated by air and stored for a long time (up to 18 years) under natural conditions are characterized. The characterization of iron nanopowder was made using X-ray diffraction analysis (XRD), scanning electron microscopy, X-ray fluorescent spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis and the test on flame propagation velocity in a bulk layer. XRD analysis revealed that the main crystalline phase in the studied powder is α-Fe. Iron oxide phases in the surface layer are amorphous. The crystalline iron oxide peak with low intensity was observed only in the powder after storage for 18 years. The iron nanopowder stored for a long time under natural conditions are found to be stable towards oxidation by air at ambient temperature. However, at the heating the iron nanopowder possesses high reactivity. Atmospheric air humidity is considered to be an important factor influencing the activity of iron nanopowder during heating and combustion.

Graphic Abstract

Keywords

Iron Nanopowder Long-term storage Thermal stability Flame propagation 

Notes

Acknowledgements

The research is carried out at Tomsk Polytechnic University within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program Grant.

References

  1. 1.
    Y. Gogotsi (ed.), Nanomaterials Handbook (CRC Press, Boca Raton, 2006)Google Scholar
  2. 2.
    A.V. Narlikar, Y.Y. Fu, The Oxford Handbook of Nanoscience and Technology: Volume 3: Applications (Oxford University Press, New York, 2010)Google Scholar
  3. 3.
    A. William Goddard III, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate (eds.), Handbook of Nanoscience, Engineering, and Technology, 3rd edn. (CRC Press, Boca Raton, 2012)Google Scholar
  4. 4.
    Y. Shanenkova, A. Sivkov, A. Ivashutenko, A. Tsimmerman, J. Phys.: Conf. Ser. (2017).  https://doi.org/10.1088/1742-6596/830/1/012087 Google Scholar
  5. 5.
    J.-L. Song, G.-Y. Lee, J.-P. Choi, J.-S. Lee, Powder Technol. (2018).  https://doi.org/10.1016/j.powtec.2018.06.041 Google Scholar
  6. 6.
    M.I. Lerner, S.G. Psakhie, A.S. Lozhkomoev, A.F. Sharipova, A.V. Pervikov, I. Gotman, E.Y. Gutmanas, Adv. Eng. Mater. (2018).  https://doi.org/10.1002/adem.201701024 Google Scholar
  7. 7.
    S. Wang, A.A. Rogachev, M. Yarmolenko, A.V. Rogachev, J. Xiaohong, M.S. Gaur, P.A. Luchnikov, O.V. Galtseva, S.A. Chizhik, Appl. Surf. Sci. (2018).  https://doi.org/10.1016/j.apsusc.2017.09.225 Google Scholar
  8. 8.
    X. Wang, Y. Guo, L. Yang, M. Han, J. Zhao, X. Cheng, J. Environ. Anal. Toxicol. (2012).  https://doi.org/10.4172/2161-0525.1000154 Google Scholar
  9. 9.
    I. Gopalakrishnan, S.R. Sugaraj, K. Sridharan, Emerging trends of nanotechnology, in Environment and Sustainability, ed. by K. Sridharan (Springer, Cham, 2018), pp. 89–98Google Scholar
  10. 10.
    K. Atkovska, K. Lisichkov, G. Ruseska, A.T. Dimitrov, A. Grozdanov, Removal of heavy metal ions from wastewater using conventional and nanosorbents: a review. J. Chem. Technol. Metall. 53(2), 202 (2018)Google Scholar
  11. 11.
    L.T. DeLuca, Def. Technol. (2018).  https://doi.org/10.1016/j.dt.2018.06.005 Google Scholar
  12. 12.
    E.L. Dreizin, Prog. Energy Combust. Sci. (2009).  https://doi.org/10.1016/j.pecs.2008.09.001 Google Scholar
  13. 13.
    S. Sabale, A. Bandgar, H. Wang, K. Gurav, J.H. Kim, S.H. Pawar, Met. Mater. Int. (2013).  https://doi.org/10.1007/s12540-013-2018-x Google Scholar
  14. 14.
    V. Polshettiwar, T. Asefa (eds.), Nanocatalysis: Synthesis and Applications (Wiley, Hoboken, 2013)Google Scholar
  15. 15.
    J. Oh, C. Rhee, Met. Mater. Int. (2008).  https://doi.org/10.3365/met.mat.2008.08.425 Google Scholar
  16. 16.
    V.M. Zhyrovetsky, D.I. Popovych, S.S. Savka, A.S. Serednytski, Nanoscale Res. Lett. (2017).  https://doi.org/10.1186/s11671-017-1891-5 Google Scholar
  17. 17.
    J. Bouillard, A. Vignes, O. Dufaud, L. Perrin, D. Thomas, J. Phys. Conf. Ser. (2009).  https://doi.org/10.1088/1742-6596/170/1/012032 Google Scholar
  18. 18.
    H.C. Wu, H.J. Ou, H.C. Hsiao, T.S. Shih, Aerosol. Air Qual. Res. (2010).  https://doi.org/10.4209/aaqr.2009.06.0043 Google Scholar
  19. 19.
    S.P. Boilard, P.R. Amyotte, F.I. Khan, A.G. Dastidar, R.K. Eckhoff, J. Loss Prevent. Proc. (2013).  https://doi.org/10.1016/j.jlp.2013.06.003 Google Scholar
  20. 20.
    O. Dufaud, D. Bideau, F.L. Guyadec, J.-P. Corriou, L. Perrin, A. Caleyron, Powder Technol. (2014).  https://doi.org/10.1016/j.powtec.2013.11.053 Google Scholar
  21. 21.
    J. Zhang, Y. Liu, H. Elledge, H. Chen, M.S. Mannan, C.V. Mashuga, J. Therm. Anal. Calorim. (2017).  https://doi.org/10.1007/s10973-017-6120-z Google Scholar
  22. 22.
    A. Gromov, U. Teipel (eds.), Metal Nanopowders: Production, Characterization, and Energetic Applications (Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, 2014)Google Scholar
  23. 23.
    J. Blackman (ed.), Metallic Nanoparticles, vol. 5, 1st edn. (Elsevier, Oxford, 2009)Google Scholar
  24. 24.
    K. Moore, M.L. Pantoya, Propellants Explos. Pyrot. (2006).  https://doi.org/10.1002/prep.200600025 Google Scholar
  25. 25.
    X. Ke, X. Zhou, G. Hao, L. Xiao, J. Liu, W. Jiang, Appl. Surf. Sci. (2017).  https://doi.org/10.1016/j.apsusc.2017.02.138 Google Scholar
  26. 26.
    A. Ilyin, D. Tikhonov, A. Mostovshchikov, Propellants Explos. Pyrotech. (2018).  https://doi.org/10.1002/prep.201800178 Google Scholar
  27. 27.
    O.B. Nazarenko, Y.A. Amelkovich, A.I. Sechin, Appl. Surf. Sci. (2014).  https://doi.org/10.1016/j.apsusc.2014.10.034 Google Scholar
  28. 28.
    Y.A. Amelkovich, O.B. Nazarenko, A.I. Sechin, P.M. Visakh, IOP Conf. Ser. Mater. Sci. Eng. (2015).  https://doi.org/10.1088/1757-899X/81/1/012072 Google Scholar
  29. 29.
    R. Crane, T. Scott, J. Hazard. Mater. (2012).  https://doi.org/10.1016/j.jhazmat.2011.11.073 Google Scholar
  30. 30.
    F. Fu, D. Dionysiou, H. Liu, J. Hazard. Mater. (2014).  https://doi.org/10.1016/j.jhazmat.2013.12.062 Google Scholar
  31. 31.
    M. Stefaniuk, P. Oleszczuk, Y.S. Ok, Chem. Eng. J. (2016).  https://doi.org/10.1016/j.cej.2015.11.046 Google Scholar
  32. 32.
    M. Shamsipur, S.M. Pourmortazavi, M. Fathollahi, J. Energ. Mater. (2012).  https://doi.org/10.1080/07370652.2010.542798 Google Scholar
  33. 33.
    K. Geng, Y. Xie, L. Xu, B. Yan, Adv. Powder Technol. (2017).  https://doi.org/10.1016/j.apt.2017.04.029 Google Scholar
  34. 34.
    X. Li, Y. Dong, M. Liu, C. Chang, X.-M. Wang, J. Alloys Compd. (2017).  https://doi.org/10.1016/j.jallcom.2016.11.241 Google Scholar
  35. 35.
    A. Akbarzadeh, M. Samiei, S. Davaran, Nanoscale Res. Lett. (2012).  https://doi.org/10.1186/1556-276X-7-144 Google Scholar
  36. 36.
    S. Abelló, D. Montané, ChemSusChem (2011).  https://doi.org/10.1002/cssc.201100189 Google Scholar
  37. 37.
    A.V. Korshunov, Russia J. Phys. Chem. B (2012).  https://doi.org/10.1134/S1990793112050053 Google Scholar
  38. 38.
    A.P. Safronov, A.V. Bagazeev, T.M. Demina, A.V. Petrov, I.V. Beketov, Nanotechnol. Russia (2012).  https://doi.org/10.1134/S1995078012030147 Google Scholar
  39. 39.
    E.N. Lysenko, A.P. Surzhikov, S.P. Zhuravkov, V.A. Vlasov, A.V. Pustovalov, N.A. Yavorovsky, J. Therm. Anal. Calorim. (2014).  https://doi.org/10.1007/s10973-013-3456-x Google Scholar
  40. 40.
    A. Pustovalov, S. Zhuravkov, Adv. Mater. Res. (2015).  https://doi.org/10.4028/www.scientific.net/AMR.1097.3 Google Scholar
  41. 41.
    D. Wen, P. Song, K. Zhang, J. Qian, J. Chem. Technol. Biotechnol. (2011).  https://doi.org/10.1002/jctb.2526 Google Scholar
  42. 42.
    J. Berasategi, A. Gomez, M. Bou-Ali, J. Gutiérrez, J.M. Barandiarán, I.V. Beketov, A.P. Safronov, G.V. Kurlyandskaya, Smart Mater. Struct. (2018).  https://doi.org/10.1088/1361-665X/aaaded Google Scholar
  43. 43.
    L. Canivet, F.O. Denayer, Y. Champion, P. Cenedese, P. Dubot, Appl. Surf. Sci. (2014).  https://doi.org/10.1016/j.apsusc.2014.04.024 Google Scholar
  44. 44.
    Y. Liu, G.V. Lowry, Environ. Sci. Technol. (2006).  https://doi.org/10.1021/es060685o Google Scholar
  45. 45.
    K. Sohn, S.W. Kang, S. Ahn, M. Woo, S.-K. Yang, Environ. Sci. Technol. (2006).  https://doi.org/10.1021/es0525758 Google Scholar
  46. 46.
    V. Sarathy, P.G. Tratnyek, J.T. Nurmi, D.R. Baer, J.E. Amonette, C.L. Chun, R.L. Penn, E.J. Reardon, J. Phys. Chem. C (2008).  https://doi.org/10.1021/jp0777418 Google Scholar
  47. 47.
    B.C. Reinsch, B. Forsberg, R.L. Penn, C.S. Kim, G.V. Lowry, Environ. Sci. Technol. (2010).  https://doi.org/10.1021/es902924h Google Scholar
  48. 48.
    Q. Wang, S. Lee, H. Choi, J. Phys. Chem. C (2010).  https://doi.org/10.1021/jp909137f Google Scholar
  49. 49.
    B. Calderon, A. Fullana, Water Res. (2015).  https://doi.org/10.1016/j.watres.2015.06.004 Google Scholar
  50. 50.
    J. Kašlík, J. Kolařík, J. Filip, I. Medřík, O. Tomanec, M. Petr, O. Malina, R. Zbořil, P.G. Tratnyek, Chem. Eng. J. (2018).  https://doi.org/10.1016/j.cej.2018.08.015 Google Scholar
  51. 51.
    M. Thuyet-Nguyen, H. Hai-Nguyen, W.J. Kim, H.Y. Kim, J.-C. Kim, Met. Mater. Int. (2017).  https://doi.org/10.1007/s12540-017-6533-z Google Scholar
  52. 52.
    Y.S. Kwon, J.C. Kim, A.P. Ilyin, O.B. Nazarenko, D.V. Tikhonov, J. Korean Powder Metall. Inst. (2012).  https://doi.org/10.4150/KPMI.2012.19.1.040 Google Scholar
  53. 53.
    Y.S. Kwon, A.A. Gromov, A.P. Ilyin, G.H. Rim, Appl. Surf. Sci. (2003).  https://doi.org/10.1016/S0169-4332(03)00059-X Google Scholar
  54. 54.
    A. Gromov, Y.-S. Kwon, P.-P. Cho, Scripta Mater. (2005).  https://doi.org/10.1016/j.scriptamat.2004.10.029 Google Scholar
  55. 55.
    A. Gromov, A. Ilyin, V. An, F. Faubert, C. de Izarra, A. Espagnacq, L. Brunet, Propell. Explos. Pyrotech. (2002).  https://doi.org/10.1002/prep.200290006 Google Scholar
  56. 56.
    Y.-S. Kwon, J.-S. Moon, A.P. Ilyin, A.A. Gromov, E.M. Popenko, Combust. Sci. Technol. (2004).  https://doi.org/10.1080/00102200490255992 Google Scholar
  57. 57.
    A. Sechin, O. Nazarenko, Yu. Amelkovich, Mater. Sci. Forum (2019).  https://doi.org/10.4028/www.scientific.net/MSF.942.1 Google Scholar
  58. 58.
    R.E. Dinnebier, S.J.L. Billinge (eds.), Powder Diffraction: Theory and Practice (Royal Society of Chemistry, Cambridge, 2008)Google Scholar
  59. 59.
    T. Radua, C. Iacovita, D. Benea, R. Turcu, Appl. Surf. Sci. (2017).  https://doi.org/10.1016/j.apsusc.2017.02.002 Google Scholar
  60. 60.
    H.K. Can, S. Kavlak, S. ParviziKhosroshahi, A. Güner, Artif. Cells Nanomed. Biotechnol. (2018).  https://doi.org/10.1080/21691401.2017.1315428 Google Scholar
  61. 61.
    F.F. Bentley, L.D. Smithson, A.L. Rozek, Infrared Spectra and Characteristic Frequencies, 700–300 cm −1 (Wiley, New York, 1968)Google Scholar
  62. 62.
    A.V. Kiselev, V.I. Lygin, Infrared Spectra of Surface Compounds (Wiley, New York, 1975)Google Scholar
  63. 63.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A, 6th edn. (Wiley, Hoboken, 2009)Google Scholar
  64. 64.
    A.A. Gromov, A.P. Il’In, U. Foerter-Barth, U. Teipel, Combust. Explos. Shock Waves (2006).  https://doi.org/10.1007/s10573-006-0036-4 Google Scholar
  65. 65.
    Y.S. Kwon, A.A. Gromov, J.I. Strokova, Appl. Surf. Sci. (2007).  https://doi.org/10.1016/j.apsusc.2006.12.124 Google Scholar
  66. 66.
    M. Traoré, O. Dufaud, L. Perrin, S. Chazelet, D. Thomas, Process Saf. Environ. Prot. (2009).  https://doi.org/10.1016/j.psep.2008.08.00 Google Scholar
  67. 67.
    S.J. Roosendaal, J.P.R. Bakker, A.M. Vredenberg, F.H.P.M. Habraken, Surf. Sci. (2001).  https://doi.org/10.1016/S0039-6028(01)01325-5 Google Scholar
  68. 68.
    A.P. Grosvenor, B.A. Kobea, N.S. McIntyre, Surf. Sci. (2004).  https://doi.org/10.1016/j.susc.2004.08.035 Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Division for Testing and Diagnostics, School of Non-Destructive TestingTomsk Polytechnic UniversityTomskRussia

Personalised recommendations