Rheological and Thermal Characterization of AISI 4605 Low-Alloy Steel Feedstock for Metal Injection Molding Process

  • Ali AskariEmail author
  • Mohammad Hossein AlaeiEmail author
  • Ali Mehdipoor Omrani
  • Khanali Nekouee
  • Seong Jin Park


In this study, rheological and thermal decomposition behavior of AISI 4605 MIM feedstock investigated using capillary and thermogravimetric analysis. For this purpose and in order to find the critical solids loading, the feedstock was prepared by compounding AISI 4605 micro powder (~ 4 µm) with an adopted multi-component wax-based binder system at various powder loadings (53–61 vol%). After preparing the feedstock with optimal solids loading, fundamental rheological characteristics of homogenized feedstock, including flow behavior index (n), flow activation energy (E), and general moldability index (αstv) were studied. Furthermore, thermal analysis of feedstock, including apparent debinding activation energy and master decomposition curve was investigated. The results showed that critical solids loading of feedstock is around 58 vol%. The flow behavior index of developed feedstock was acceptable, since it came out to be less than one. Also, flow activation energy which shows the sensitivity of material to temperature changes, came out to be 70.406 kJ/mol. Using these two parameters, general moldability index was calculated to be 2.3147E−06. Finally, the master decomposition curve of feedstock was constructed based on calculated apparent debinding activation energy and verified using decomposition curves at different heating rates of 2, 5 and 10 °C/min.

Graphic Abstract


Metal injection molding AISI 4605 low-alloy steel Rheological behavior Thermal decomposition behavior General moldability index Master decomposition curve 



  1. 1.
    R.M. German, A. Bose, Injection Molding of Metals and Ceramics (Princeton, Metal Powder Industries Federation, 1997), pp. 11–53Google Scholar
  2. 2.
    R.M. German, Powder Metallurgy Science (Princeton, Metal Powder Industries Federation, 1994), pp. 6692–8540Google Scholar
  3. 3.
    Y.L. Ho, S.T. Lin, Metall. Mater. Trans. A 26, 133 (1995)CrossRefGoogle Scholar
  4. 4.
    A.J. Coleman, K. Murray, M. Kearns, T.A. Tingskog, Processing and properties of 4605 MIM parts manufactured via a master alloy route (The European Powder Metallurgy Association, 2012). Accessed 13 Mar 2012
  5. 5.
    S.V. Atre, T.J. Weaver, R.M. German, Injection Molding of Metals and Ceramics (Princeton, Metal Powder Industries Federation, 1998)Google Scholar
  6. 6.
    W.J. Tseng, Mater. Sci. Eng. A 289, 116 (2000)CrossRefGoogle Scholar
  7. 7.
    M.D. Hayat, G. Wen, M.F. Zulkifli, P. Cao, Powder Technol 270, 296 (2015)CrossRefGoogle Scholar
  8. 8.
    K.C. Hsu, G.M. Lo, Powder Metall. 39, 286 (1996)CrossRefGoogle Scholar
  9. 9.
    K.C. Hsu, C.C. Lin, G.M. Lo, Can. Metall. Q. 35, 181 (1996)CrossRefGoogle Scholar
  10. 10.
    G. Aggarwal, S.J. Park, I. Smid, Int. J. Refract. Met. Hard Mater. 24, 253 (2006)CrossRefGoogle Scholar
  11. 11.
    J.P. Choi, H.G. Lyu, W.S. Lee, J.S. Lee, Powder Technol. 261, 201 (2014)CrossRefGoogle Scholar
  12. 12.
    M.H.I. Ibrahim, N. Muhamad, A.B. Sulong, Int. J. Mech. Mater. Eng. 4, 1 (2009)Google Scholar
  13. 13.
    J. Hidalgo, A. Jiménez-Morales, J.M. Torralba, J. Eur. Ceram. Soc. 32, 4063 (2012)CrossRefGoogle Scholar
  14. 14.
    V.A. Krauss, E.N. Pires, A.N. Klein, M.C. Fredel, Mater. Res. 8, 187 (2005)CrossRefGoogle Scholar
  15. 15.
    J.W. Oh, W.S. Lee, S.J. Park, Powder Technol. 311, 18 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Li, L. Li, K.A. Khalil, J. Mater. Process. Technol. 183, 432 (2007)CrossRefGoogle Scholar
  17. 17.
    Y. Li, X. Liu, F. Luo, J. Yue, Trans. Nonferrous Met. Soc. China 17, 1 (2007)CrossRefGoogle Scholar
  18. 18.
    S. Md Ani, A. Muchtar, N. Muhamad, J.A. Ghani, Ceram. Int. 40, 2819 (2014)CrossRefGoogle Scholar
  19. 19.
    D. Tsai, AIChE J. 37, 547 (1991)CrossRefGoogle Scholar
  20. 20.
    P. Calvert, M. Cima, J. Am. Ceram. Soc. 73, 575 (1990)CrossRefGoogle Scholar
  21. 21.
    Y.C. Lam, S.C.M. Yu, K.C. Tam, Y. Shengjie, Metall. Mater. Trans. A. 31, 2597 (2000)CrossRefGoogle Scholar
  22. 22.
    M.R. Barone, J.C. Ulicny, J. Am. Ceram. Soc. 73, 3323 (1990)CrossRefGoogle Scholar
  23. 23.
    S.A. Matar, M.J. Edirisinghe, J.R.G. Evans, E.H. Twizell, J. Mater. Res. 8, 617 (1993)CrossRefGoogle Scholar
  24. 24.
    S.J. Park, R.M. German, Int. J. Mater. Struct. Integr. 1, 128 (2007)CrossRefGoogle Scholar
  25. 25.
    J.H. Song, J.R.G. Evans, M.J. Edirisinghe, E.H. Twizell, J. Mater. Res. 15, 449 (2000)CrossRefGoogle Scholar
  26. 26.
    S.-J. Park, Y. Wu, D.F. Heaney, X. Zou, G. Gai, R.M. German, Metall. Mater. Trans. A. 40, 215 (2009)CrossRefGoogle Scholar
  27. 27.
    G. Aggarwal, I. Smid, S.J. Park, R.M. German, Int. J. Refract. Met. Hard Mater. 25, 226 (2007)CrossRefGoogle Scholar
  28. 28.
    S.V. Atre, R.K. Enneti, S.J. Park, R.M. German, Powder Metall. 51, 368 (2008)CrossRefGoogle Scholar
  29. 29.
    J.W. Oh, W.S. Lee, S.J. Park, Int. J. Adv. Manuf. Technol. 97, 4115 (2018)CrossRefGoogle Scholar
  30. 30.
    J. Man, J. Sae, C. Woo, J. Won, J. Hyun, K.H. Kate, S.V. Atre, Y. Kim, S. Jin, Ceram. Int. 44, 12709 (2018)CrossRefGoogle Scholar
  31. 31.
    D. Seul, J. Won, H. Jun, S. Jin, J. Alloys Compd. 749, 758 (2018)CrossRefGoogle Scholar
  32. 32.
    R.H. Christopher, S. Middleman, Ind. Eng. Chem. Fundam. 4, 422 (1965)CrossRefGoogle Scholar
  33. 33.
    S. Gabbanelli, G. Drazer, J. Koplik, Phys. Rev. E. 72, 46312 (2005)CrossRefGoogle Scholar
  34. 34.
    X. Huang, B. Liang, S. Qu, J. Mater. Process. Technol. 137(1–3), 132 (2003)CrossRefGoogle Scholar
  35. 35.
    R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications (Butterworth-Heinemann, Oxford, 2011)Google Scholar
  36. 36.
    M.Y. Cao, B.O. Rhee, C.I. Chung, Adv. Powder Metall. 2, 59 (1991)Google Scholar
  37. 37.
    S.-L. Li, Y.-M. Li, X.-H. Qu, B.-Y. Huang, Trans. Nonferrous Met. Soc. China. 12, 105 (2002)Google Scholar
  38. 38.
    H.E. Kissinger, Anal. Chem. 29, 1702 (1957)CrossRefGoogle Scholar
  39. 39.
    G. Aggarwal, S.-J. Park, I. Smid, R.M. German, Metall. Mater. Trans. A. 38, 606 (2007)CrossRefGoogle Scholar
  40. 40.
    D.M. Bigg, R.G. Barry, Progress in 56th Society of Plastic Engineers–Annual Technical Conference (1998).Google Scholar
  41. 41.
    M. Khakbiz, A. Simchi, R. Bagheri, Mater. Sci. Eng. A. 407, 105 (2005)CrossRefGoogle Scholar
  42. 42.
    M.E. Sotomayor, A. Várez, B. Levenfeld, Powder Technol. 200, 30 (2010)CrossRefGoogle Scholar
  43. 43.
    J.M. Park, J.S. Han, C.W. Gal, J.W. Oh, K.H. Kate, S.V. Atre, Y. Kim, S.J. Park, Powder Technol. 330, 19 (2018)CrossRefGoogle Scholar
  44. 44.
    J.W. Oh, Y. Seong, S.J. Park, J. Mater. Process. Technol. 262, 503 (2018)CrossRefGoogle Scholar
  45. 45.
    J.W. Oh, J.M. Park, D.S. Shin, J. Noh, S.J. Park, Mater. Manuf. Process., 1 (2018).Google Scholar
  46. 46.
    R.E. Smallman, R.J. Bishop, Modern physical metallurgy and materials engineering, (Elsevier, UK, 1999), pp. 35–278Google Scholar
  47. 47.
    H. Abolhasani, N. Muhamad, Int. J. Mech. Mater. Eng. 4, 294 (2009)Google Scholar
  48. 48.
    Z.Y. Liu, N.H. Loh, S.B. Tor, K.A. Khor, Y. Murakoshi, R. Maeda, Mater. Lett. 48, 31 (2001)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of Materials and Manufacturing ProcessesMalek Ashtar University of TechnologyTehranIran
  2. 2.Center of Composite Materials, Faculty of Materials and Manufacturing ProcessesMalek Ashtar University of TechnologyTehranIran
  3. 3.Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations