Advertisement

Experimental and Numerical Investigation of VMR and HPTR Pilgering of Zr–1.5%Nb Tubes

  • M. H. Musazadeh
  • E. Mohammad SharifiEmail author
  • R. Vafaei
  • Kh. Farmanesh
Article
  • 11 Downloads

Abstract

Due to role of the sequence of cold pilger rolling processes with intermediate heat treatments in regular Zr cladding tube productions, the precise study of such processes and their effects on the material properties, geometry and deformation behavior of the tube can be very important. Therefore, a unique set of experimental and finite element simulation examinations were carried out to investigate the mechanical properties, microstructure, hydrides fraction (F) and deformation behavior of Zr–1.5%Nb by employing a series of vertical mass ring die mill and roll cold reduction mill (Holodnoj Prokatki Trub Rolikami: HPTR) processes. Furthermore, it was important to optimize the process parameters and the resulting mechanical properties of the cold-rolled cladding tubes. Therefore, the effects of the main process parameters (feed rate and turn angle) on the damage build-up during the pilgering process were also studied. To determine the optimum process parameters, a new revised Latham–Cockcraft damage was calculated for different conditions by introducing the new subroutine, which considered the compressive stresses on the formula. It is shown that the proposed model is completely reliable. Then, based on its results, the optimum values of process parameters could be obtained. Besides, it is concluded that the annealing process could change the orientations of zirconium hydrides from the radial direction to the circumferential one. The different Fn values in the internal and external surfaces of the samples were related to the basal planes orientations at these two layers.

Graphic Abstract

Keywords

HPTR VMR Zr alloy Latham–Cockcraft damage Finite element simulation Pilger rolling 

Notes

References

  1. 1.
    J.A.L. Robertson, J. Nucl. Mater. 100, 108 (1981)CrossRefGoogle Scholar
  2. 2.
    C. Lemaignan, A.T. Motta, Mater. Sci. Technol. 10B, 1–51 (1994)Google Scholar
  3. 3.
    G.P. Sabol, in ZIRLO TM—An Alloy Development Success, ed. by P. Rudling, B. Kammenzind (American Society Testing and Materials, West Conshohocken, 2005), pp. 3–24Google Scholar
  4. 4.
    H. Dyja, A. Kawałek, K. Ozhmegov, Arch. Civ. Mech. Eng. 19, 268 (2019)CrossRefGoogle Scholar
  5. 5.
    V.F. Urbanic, B. Cox, Can. Metall. Q. 24(3), 189 (1985)CrossRefGoogle Scholar
  6. 6.
    Y.H. Joeng, K.O. Lee, H.G. Kim, J. Nucl. Mater. 302, 9 (2002)CrossRefGoogle Scholar
  7. 7.
    R. Kapoor, J.K. Chakravartty, J. Nucl. Mater. 306, 126 (2002)CrossRefGoogle Scholar
  8. 8.
    A. Harte, M. Griffiths, M. Preuss, J. Nucl. Mater. 505, 227 (2018)CrossRefGoogle Scholar
  9. 9.
    H. Tian, X. Wanga, W. Gong, J. Zhou, H. Zhang, J. Nucl. Mater. 456, 321 (2015)CrossRefGoogle Scholar
  10. 10.
    C.E.L. Hunt, E.M. Schulson, J. Nucl. Mater. 92, 184 (1980)CrossRefGoogle Scholar
  11. 11.
    C.E. Coleman, D. Hardie, J. Less Common Met. 11, 168 (1966)CrossRefGoogle Scholar
  12. 12.
    J.J. Kearns, J. Nucl. Mater. 22, 292 (1967)CrossRefGoogle Scholar
  13. 13.
    T.R.G. Kutty, K. Ravi, C. Ganguly, J. Nucl. Mater. 265, 91 (1999)CrossRefGoogle Scholar
  14. 14.
    D.O. Northwood, U. Kosasih, Int. Met. Rev. 28, 92 (1983)CrossRefGoogle Scholar
  15. 15.
    A. Sarkar, J.K. Chakravartty, J. Nucl. Mater. 440, 136 (2013)CrossRefGoogle Scholar
  16. 16.
    J.K. Chakravartty, R. Kapoor, S. Banerjee, Y.V.R.K. Prasad, J. Nucl. Mater. 362, 75 (2007)CrossRefGoogle Scholar
  17. 17.
    G.V. Filimonov, O.A. Nikishov, Prokatka cirkonievyh trub, Moskva (Rolling zirconium tubes), 105 (1988)Google Scholar
  18. 18.
    E.Y. Klassen, A.G. Kolesnikov, D.S. Cherepanov, Metals 62, 686 (2018)Google Scholar
  19. 19.
    S. Mulot, A. Hacquin, P. Montmitonnet, J.L. Aubin, J. Mater. Process Technol. 60(1–4), 505 (1996)CrossRefGoogle Scholar
  20. 20.
    P. Montmitonnet, R. LogE, M. Hamery, Y. Chastel, J.L. Doudoux, J.L. Aubin, J. Mater. Process Technol. 125–126, 814 (2002)CrossRefGoogle Scholar
  21. 21.
    M.H. Musazadeh, E. Mohammad Sharifi, R. Vafaei, K. Farmanesh, Met. Mat. Trans. B 49, 3030 (2018)CrossRefGoogle Scholar
  22. 22.
    G. Kumar, S. Balo, A. Dhoble, J. Singh, R. Singh, D. Srivastava, G.K. Dey, I. Samajdar, Met. Mat. Trans. A 48(6), 2844 (2017)CrossRefGoogle Scholar
  23. 23.
    V.F. Frolov, V.N. Danchenko, Ya.V. Frolov, Kholodnaya pil’gernaya prokata trub (Cold Pilger Rolling of Pipe), Dnepropetrovsk, Porogi (2005)Google Scholar
  24. 24.
    Y. Barzegar, R. Jafari Nedoushan, A. Razazzadeh, M. Farzin, D. Banabic, Proc. Rom. Acad. 17(3), 267 (2016)Google Scholar
  25. 25.
    L. Chai, B. Luan, K.L. Murty, Q. Liu, Acta Mater. 61, 3099 (2013)CrossRefGoogle Scholar
  26. 26.
    R. Birch, S. Wang, V.S. Tong, T.B. Britton, J. Nucl. Mater. 513, 221 (2019)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringMalek Ashtar University of TechnologyShahin ShahrIran

Personalised recommendations