Advertisement

Properties and Corrosion Resistance of AISI H13 Hot-Work Tool Steel with Borided B4C Powders

  • Ali GünenEmail author
  • İsmail Hakki Karahan
  • Mustafa Serdar Karakaş
  • Bülent Kurt
  • Yusuf Kanca
  • Vedat Veli Çay
  • Murat Yıldız
Article
  • 30 Downloads

Abstract

In this study, the surface of AISI H13 steel was borided with powder blends of B4C and NaBF4 using the powder-pack method at 800, 900 and 1000 °C for 2, 4 and 6 h. The structural and mechanical characteristics of the boride layers formed on the surface were characterized using scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, 2D surface profilometry, microhardness and electrochemical corrosion (3.5 wt% NaCl) tests. The boride layer exhibited a single phase structure (Fe2B) in samples coated at 800 °C and a dual-phase structure (FeB + Fe2B) at higher boriding temperatures (900 and 1000 °C). The boride layers were compact and crack-free in all boriding conditions. Depending on boriding parameters, the thickness, hardness and average surface roughness (Ra) of the coatings were found to range between 5.81 and 102.46 µm, 1635–1915 HV and 0.315–0.650 µm, respectively. The borided AISI H13 steel displayed up to 33.5 times and 2.4 times higher corrosion resistance than untreated AISI H13 steel and martensitic AISI 431 steel, respectively. This suggests potential use of borided AISI H13 steel in the steam turbines and marine applications as an alternative to the more costly martensitic and duplex stainless steel grades. The corrosion resistance depended on the phase structure (single- or dual-layer), density, thickness and surface roughness of the boride coatings.

Graphic Abstract

Keywords

Steel Boriding Corrosion NaCl 

Notes

References

  1. 1.
    ASM International, ASM Handbook, Volume 1: Properties and Selection: İrons, Steels, and High-Performance Alloys (Materials Park, ASM International, 1990), p. 1063. ISBN 978-0-87170-377-4Google Scholar
  2. 2.
    D.T. Llewellyn, R.C. Hudd, Steels: Metallurgy and applications (Elsevier, Amsterdam, 1998), p. 400. ISBN 978-0-7506-3757-2Google Scholar
  3. 3.
    B.S. Covino‎, S.D. Cramer, Corrosion: Fundamentals, Testing and Protection, vol. 13A, 10th edn. (ASM International, Materials Park, 2003), p. 1135Google Scholar
  4. 4.
    E. Bardal, Corrosion and Protection (Springer, New York, 2000), p. 315Google Scholar
  5. 5.
    J.R. Davis, Surface Engineering for Corrosion and Wear Resistance (CRC Press Taylor & Francis Group, Boca Raton, 2014), p. 289Google Scholar
  6. 6.
    A.G. Matuschka, Boronizing (Carl Hanser Verlag, München, 1980)Google Scholar
  7. 7.
    M.S. Gök, Y. Küçük, A. Erdoğan, M. Öge, E. Kanca, A. Günen, Surf. Coat. Technol. 328, 54–62 (2017)Google Scholar
  8. 8.
    A. Günen, Y. Kanca, İ.H. Karahan, M.S. Karakaş, M.S. Gök, E. Kanca, A. Çürük, Metall. Mater. Trans. A 49(11), 5833–5847 (2018)Google Scholar
  9. 9.
    J. Jibo, W. Yi, Z. Yi, Z. Qingdong, Z.Lei Qiongyu, Surf. Coat. Technol. 206, 473–478 (2011)Google Scholar
  10. 10.
    G. Telasang, J. Dutta Majumdar, G. Padmanabham, I. Manna, Surf. Coat. Technol. 261, 69–78 (2015)Google Scholar
  11. 11.
    G.K. Kariofillis, G.E. Kiourtsidis, D.N. Tsipas, Surf. Coat. Technol. 201(1–2), 19–24 (2006)Google Scholar
  12. 12.
    A. Günen, E. Kanca, M. Demir, Y. Er, G. Sağlam, M.S. Gök, Tribol. Trans. 60(2), 267–275 (2017)Google Scholar
  13. 13.
    C.M. Brakman, A.W.J. Gommers, E.J. Mittemeijer, J. Mater. Res. 4(6), 1354–1370 (1989)Google Scholar
  14. 14.
    P. Asthana, H. Liang, M. Usta, A.H. Ucisik, J. Tribol. 129(1), 1–10 (2007)Google Scholar
  15. 15.
    I. Campos, M. Palomar-Pardavé, A. Amador, C. VillaVelázquez, J. Hadad, Appl. Surf. Sci. 253(23), 9061–9066 (2007)Google Scholar
  16. 16.
    A. Gunen, E. Kanca, Matéria (Rio de Janeiro) 22(2), e11829 (2017)Google Scholar
  17. 17.
    M. Keddam, M. Ortiz-Dominguez, M. Elias-Espinosa, A. Arenas-Flores, J. Zuno-Silva, D. Zamarripa-Zepeda, O.A. Gomez-Vargas, Metall. Mater. Trans. A 49(5), 1895–1907 (2018)Google Scholar
  18. 18.
    J. Zhong, W. Qin, X. Wang, E. Medvedovski, J.A. Szpunar, K. Guan, Metall. Mater. Trans. A (2018).  https://doi.org/10.1007/s11661-018-5002-8 Google Scholar
  19. 19.
    I. Gunes, M. Erdogan, A.G. Çelik, Mater. Res. 17(3), 612–618 (2014)Google Scholar
  20. 20.
    I. Mejía-Caballero, J. Martinez-Trinidad, M. Palomar-Pardavé, M. Romero-Romo, H. Herrera-Hernández, O. Herrera-Soria, I.C. Silva, J. Mater. Eng. Perform. 23(8), 2809–2818 (2014)Google Scholar
  21. 21.
    Y. Ergun, I. Gunes, M. Erdogan, N. Cankaya, J. Nanosci. Nanotechnol. 17(12), 8946–8951 (2017)Google Scholar
  22. 22.
    M. Erdoğan, I. Gunes, A. Dalar, Trans. Ind. Inst. Met. 67(2), 291–297 (2014)Google Scholar
  23. 23.
    H. Tavakoli, S.M. Khoie, Mater. Chem. Phys. 124(2), 1134–1138 (2010)Google Scholar
  24. 24.
    P. Naemchanthara, P. Juijerm, Metal. Mater. Trans. B 49(5), 2875–2880 (2018)Google Scholar
  25. 25.
    H. Wang, Y. Zhao, X. Yuan, K. Chen, R. Xu, Phys. Procedia 50, 124–130 (2013)Google Scholar
  26. 26.
    R.L. Basso, H.O. Pastore, V. Schmidt, I.J. Baumvol, S.A. Abarca, F.S. de Souza, A. Spinelli, C.A. Figueroa, C. Giacomelli, Corros. Sci. 52(9), 3133–3139 (2010)Google Scholar
  27. 27.
    Y. Liu, A. Li, X. Cheng, S.Q. Zhang, H.M. Wang, Mater. Sci. Eng. A 666, 27–33 (2016)Google Scholar
  28. 28.
    A. Günen, E. Kanca, H. Çakir, M.S. Karakaş, M.S. Gök, Y. Küçük, M. Demir, Surf. Coat. Technol. 311, 374–382 (2017)Google Scholar
  29. 29.
    Y. Iwabuchi, Y. Kobayashi, Adv. Mater. Res. 586, 64–68 (2012)Google Scholar
  30. 30.
    A. Motallebzadeh, E. Dilektasli, M. Baydogan, E. Atar, H. Cimenoglu, Wear 328, 110–114 (2015)Google Scholar
  31. 31.
    M. Erdogan, I. Gunes, Matéria (Rio de Janeiro) 20(2), 523–529 (2015)Google Scholar
  32. 32.
    A.P. Krelling, J.C.G. Milan, C.E. da Costa, Surf. Eng. 31(8), 581–587 (2019)Google Scholar
  33. 33.
    S. Şahin, J. Mater. Process. Technol. 209(4), 1736–1741 (2009)Google Scholar
  34. 34.
    M.S. Karakaş, A. Günen, A.E. Kanca, E. Yilmaz, Arch. Metall. Mater. 63(1), 159–165 (2018)Google Scholar
  35. 35.
    G. Bolelli, L. Lusvarghi, R. Giovanardi, Surf. Coat. Technol. 202(19), 4793–4809 (2008)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Metallurgy and Materials Engineering, Faculty of Engineering and Natural SciencesIskenderun Technical UniversityHatayTurkey
  2. 2.Department of Physics, Faculty of Science and ArtsMustafa Kemal UniversityHatayTurkey
  3. 3.Department of Metallurgical and Materials Engineering, Faculty of Engineering and Natural SciencesKonya Technical UniversityKonyaTurkey
  4. 4.Department of Materials Engineering, Faculty of Engineering and ArchitectureNevşehir Hacı Bektaş Veli UniversityNevşehirTurkey
  5. 5.Department of Mechanical Engineering, Faculty of EngineeringHitit UniversityÇorumTurkey
  6. 6.School of Civil AviationDicle UniversityDiyarbakirTurkey
  7. 7.Department of Mechanical Engineering, Faculty of Engineering and Natural SciencesIskenderun Technical UniversityHatayTurkey

Personalised recommendations