Multi-Scale Mechanical Behaviour of a Highly Porous Alumina Based Foam

  • Dorel Buncianu
  • Nicolas Tessier-DoyenEmail author
  • Joseph Absi
  • Radu Negru
  • Dan-Andrei Şerban
  • Liviu Marşavina


This work aims to characterize mechanical properties (strength and fracture toughness) of an alumina-based ceramic foam exhibiting a pore volume fraction around 88% with a multi-scale porosity ranging from 300 to < 2 µm with a slight interconnectivity of cells. Young’s modulus determined by three different methods (resonance, ultrasonic and compression) has been estimated to approximately 4 GPa which is a remarkable value for materials exhibiting such a porous volume. Moreover, regarding solid material, a value of 380 GPa taking into account the imperfect purity of alumina and the effect of grain boundaries has been determined by indentation at nano-scale. Values predicted by Ashby–Gibson and Pabst analytical models provide reliable results concerning the significant interconnectivity of porous cells in the microstructure. Finally, compressive, bending strengths and fracture toughness are respectively close to 2 MPa, 1 MPa and 0.1 MPa m1/2. These values are in agreement with the results obtained by some authors for alumino-silicate based foams exhibiting close compositions.

Graphic abstract


Ceramic foam Mechanical properties Young’s modulus Analytical modeling 



Authors would like to thanks University of Limoges for financial support within the framework of Cer4Rom project mobility


  1. 1.
    A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, J. Am. Ceram. Soc. 89, 1771 (2006)CrossRefGoogle Scholar
  2. 2.
    L. Montanaro, Y. Jorand, G. Fantozzi, A. Negro, J. Eur. Ceram. Soc. 18, 1339 (1998)CrossRefGoogle Scholar
  3. 3.
    J. Banhart, Prog. Mater. Sci. 46, 559 (2001)CrossRefGoogle Scholar
  4. 4.
    Z. Su, X. Xi, Y. Hu, Q. Fei, S. Yu, H. Li, J. Yang, J. Porous Mater. 21, 601 (2014)CrossRefGoogle Scholar
  5. 5.
    B.S.M. Seeber, U.T. Gonzenbach, L.J. Gauckler, J. Mater. Res. 28, 2281 (2013)CrossRefGoogle Scholar
  6. 6.
    R. Faure, F. Rossignol, T. Chartier, C. Bonhomme, A. Maître, G. Etchegoyen, P. Del Gallo, D. Gary, J. Eur. Ceram. Soc 31, 303 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Ghofrani, T. Ebadzadeh, B. Raissi, J. Mater. Res. 107, 653 (2016)Google Scholar
  8. 8.
    M. Turnšek, P. Krajnc, R. Liska, T. Koch, J. Eur. Ceram. Soc. 36, 1045 (2016)CrossRefGoogle Scholar
  9. 9.
    C. Freitas, N. Vitorino, M.J. Ribeiro, J.C.C. Abrantes, J.R. Frade, Appl. Clay Sci. 109–110, 15 (2015)CrossRefGoogle Scholar
  10. 10.
    T. Konegger, R. Felzmann, B. Achleitner, D. Brouczek, Ceram Int. 41, 8630 (2015)CrossRefGoogle Scholar
  11. 11.
    I. Dlouhý, L. Rcaronehor, Z. Chlup, Key Eng. Mater. 409, 168 (2009)CrossRefGoogle Scholar
  12. 12.
    R. Brezny, D.J. Green, J. Am. Ceram. Soc. 72, 1145 (1989)CrossRefGoogle Scholar
  13. 13.
    R. Brezny, D.J. Green, C.Q. Dam, J. Am. Ceram. Soc. 72, 885 (1989)CrossRefGoogle Scholar
  14. 14.
    W.L. Huo, F. Qi, X.Y. Zhang, N. Ma, K. Gan, Y.N. Qu, J. Xu, J.L. Yang, J. Eur. Ceram. Soc. 36, 4163 (2016)CrossRefGoogle Scholar
  15. 15.
    C. Tallon, C. Chuanuwatanakul, D.E. Dunstan, G.V. Franks, Ceram. Int. 42, 8478 (2016)CrossRefGoogle Scholar
  16. 16.
    I. Dlouhya, Z. Chlupa, H. Hadrabaa, L. Rehorekb, Proc. Mater. Sci. 12, 106 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Meille, M. Lombardi, J. Chevalier, L. Montanaro, J. Eur. Ceram. Soc. 32, 3959 (2012)CrossRefGoogle Scholar
  18. 18.
    D. Staub, S. Meille, V. Le Corre, L. Rouleau, J. Chevalier, Acta Mater. 107, 261 (2016)CrossRefGoogle Scholar
  19. 19.
    B. Dong, G. Wang, B. Yuan, J. Han, K. Chen, H. Li, J. Porous Mater. 24, 805 (2017)CrossRefGoogle Scholar
  20. 20.
    V. Sciamanna, B. Naït-Ali, M. Gonon, Ceram. Int. 41, 2599 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Bourret, F. Pennec, J. Vicente, A. Alzina, N. Tessier-Doyen, C.S. Peyratout, D.S. Smith, J. Am. Ceram. Soc. 97, 938 (2014)CrossRefGoogle Scholar
  22. 22.
    J. Bourret, N. Tessier-Doyen, B. Naït-Ali, F. Pennec, A. Alzina, C.S. Peyratout, D.S. Smith, J. Eur. Ceram. Soc. 33, 1487 (2013)CrossRefGoogle Scholar
  23. 23.
    L.J. Gibson, M.F. Ashby, Cellular Solids, Structure and Properties (Cambridge University Press, Cambridge, 1997)CrossRefGoogle Scholar
  24. 24.
    M.F. Ashby, Philos. Trans. R. Soc. A. 364, 15 (2010)CrossRefGoogle Scholar
  25. 25.
    W. Pabst, T. Uhlirova, E. Gregorova, Ceram. Int. 44, 8100 (2018)Google Scholar
  26. 26.
    Z. Hashin, S. Shtrikman, J. Mech. Phys. Solids 11, 127 (1963)CrossRefGoogle Scholar
  27. 27.
    W. Pabst, T. Uhlirova, E. Gregorova, A. Wiegmann, J. Eur. Ceram. Soc 38, 2570 (2018)CrossRefGoogle Scholar
  28. 28.
    ASTM E 1820-01, Standard Test Method for Fracture Toughness. ASTM International, USGoogle Scholar
  29. 29.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)CrossRefGoogle Scholar
  30. 30.
    N. Tessier-Doyen, J.C. Glandus, M. Huger, J. Mater. Sci. 42, 5826 (2007)CrossRefGoogle Scholar
  31. 31.
    ASTM E 1865-01, Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration. ASTM International, USGoogle Scholar
  32. 32.
    RFDA MF Basic, Manual Version 1.0, IMCE N.V., Slingerweg 52, Genk, BelgiumGoogle Scholar
  33. 33.
    J. Absi, J.C. Glandus, J. Eur. Ceram. Soc 24, 2835 (2004)CrossRefGoogle Scholar
  34. 34.
    L. Zhang, J.M.F. Ferreira, S. Olhero, L. Courtois, T. Zhang, E. Maire, J.C. Rauhe, Acta Mater. 60, 4235 (2012)CrossRefGoogle Scholar
  35. 35.
    H. Li, R.C. Bradt, J. Mater. Sci. 28, 917 (1993)CrossRefGoogle Scholar
  36. 36.
    D.A. Serban, N. Tessier-Doyen, J. Absi, L. Marsavina, R. Negru, IOP Conf. Ser. Mater. Sci. Eng. 416, 1 (2018)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Mechanics and Strength of MaterialsUniversitatea Politehnica din TimişoaraTimişoaraRomania
  2. 2.IRCER, UMR CNRS 7315University of LimogesLimogesFrance

Personalised recommendations