Advertisement

Structure and Electrochemical Properties of Laser Cladding Al2CoCrCuFeNiTix High-Entropy Alloy Coatings

  • Xingwu QiuEmail author
Article
  • 27 Downloads

Abstract

Al2CoxCrCuFeNiTi high-entropy alloy coatings were prepared on Q235 steel by laser cladding. The structure was tested by scanning electron microscopy; the corrosion resistances of the alloys were tested by electrochemical workstation. The results show that the microstructures of Ti2.0 high entropy alloy are mainly equiaxed grains, spherical particles, white particles and "plum blossom" particles are distributed on it, columnar grains are located near the bonding zone. The corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings in 1 mol/L NaOH and 0.5 mol/L HCl solutions are excellent. In 1 mol/L NaOH solution, compared with Q235 steel, the corrosion current density of the coating decrease by 5 orders of magnitude, the corrosion potential increased by 0.03–0.34 V. In 0.5 mol/L HCl solution, compared with Q235 steel, the corrosion current density of the coating decreases, the corrosion potential increased by 0.06–0.14 V. With the increase of Ti content, the corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coating in 0.5 mol/L HCl solution is enhanced, while, in 1 mol/L NaOH solution, the corrosion resistance of the coatings decreased. Cyclic polarization curves showed that negative hysteresis loops appeared in Ti0.5 high-entropy alloy coating in 1 mol/L NaOH solution and Ti2.0 high-entropy alloy coating in 0.5 mol/L HCl solution, which indicated that the coatings has excellent pitting corrosion resistance.

Graphic Abstract

Keywords

High-entropy alloys Laser cladding Structure Corrosion resistance 

Notes

Acknowledgements

This work was supported by the Project of Deyang Science and Technology Bureau (2018SZY120), Sichuan Province, China, and the Project of Sichuan College of Architecture Technology (2019KJ01).

References

  1. 1.
    H. Torres, S. Slawik, C. Gachot, B. Prakash, M.R. Ripoll, Surf. Coat. Technol. 337, 24 (2018)CrossRefGoogle Scholar
  2. 2.
    X.R. Feng, X.F. Cui, G. Jin, W. Zheng, Z.B. Cai, X. Wen, B.W. Lu, J.M. Liu, Surf. Coat. Technol. 333, 104 (2018)CrossRefGoogle Scholar
  3. 3.
    S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Z.F. Zhang, Mater. Des. 133, 122 (2017)CrossRefGoogle Scholar
  4. 4.
    C.Y. Shang, E. Axinte, J. Sun, X.T. Li, P. Li, J.W. Du, P.C. Qiao, Y. Wang, Mater. Des. 117, 193 (2017)CrossRefGoogle Scholar
  5. 5.
    G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, J. Alloys Compd. 591, 11 (2014)CrossRefGoogle Scholar
  6. 6.
    D.B. Miracle, O.N. Senkov, Acta Mater. 122, 488 (2016)Google Scholar
  7. 7.
    Y.Z. Lu, G.K. Huang, Y.Z. Wang, H.G. Li, Z.X. Qin, X. Lu, Mater. Lett. 210, 46 (2018)CrossRefGoogle Scholar
  8. 8.
    D. Choudhuri, B. Gwalani, S. Gorsse, C.V. Mikler, R.V. Ramanujan, M.A. Gibson, R. Banerjee, Scr. Mater. 127, 186 (2017)CrossRefGoogle Scholar
  9. 9.
    K.K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 61, 141 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Beyramali Kivy, M. Asle Zaeem, S. Lekakh, Mater. Des. 127, 224 (2017)CrossRefGoogle Scholar
  11. 11.
    Y.P. Lu, H. Jiang, S. Guo, T.M. Wang, Z.Q. Cao, T.J. Li, Intermetallics 91, 124 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, High-Entropy Materials (Springer, Berlin, 2019)CrossRefGoogle Scholar
  13. 13.
    L. Liu, J.B. Zhu, C. Zhang, J.C. Li, Q. Jiang, Mat. Sci. Eng. A Struct. 548, 64 (2012)CrossRefGoogle Scholar
  14. 14.
    Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016)CrossRefGoogle Scholar
  15. 15.
    Y.L. Chou, J.W. Yeh, H.C. Shih, J. Electrochem. Soc. 158, C246 (2011)CrossRefGoogle Scholar
  16. 16.
    B. Wu, Z.Y. Xie, J.C. Huang, J.W. Lin, Y.X. Yang, L.Q. Jiang, J.L. Huang, G.X. Ye, C.F. Zhao, S.J. Yang, B.S. Sa, Intermetallics 93, 40 (2018)CrossRefGoogle Scholar
  17. 17.
    Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corros. Sci. 119, 33 (2017)CrossRefGoogle Scholar
  18. 18.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)CrossRefGoogle Scholar
  19. 19.
    D. Liu, J.B. Cheng, H. Ling, Mater. Sci. Technol. 31, 1159 (2015)CrossRefGoogle Scholar
  20. 20.
    J.B. Cheng, X.B. Liang, Z.H. Wang, B.S. Xu, Plasma Chem. Plasma Proc. 33, 979 (2013)CrossRefGoogle Scholar
  21. 21.
    X.W. Qiu, Y.P. Zhang, L. He, C.G. Liu, J. Alloy. Compd. 549, 195 (2013)CrossRefGoogle Scholar
  22. 22.
    J.B. Cheng, D. Liu, X.B. Liang, B.S. Xu, Acta Metall. Sin. 27, 1031 (2014)CrossRefGoogle Scholar
  23. 23.
    P.Y. Zhang, C. Wang, M.Y. Xie, Y.Q. Li, Z.B. An, Infrared Laser Eng. 46, 906003 (2017)CrossRefGoogle Scholar
  24. 24.
    C.L. Wang, Y. Gao, R. Wang, D.Q. Wei, M. Cai, Y.K. Fu, J. Alloy. Compd. 740, 1099 (2018)CrossRefGoogle Scholar
  25. 25.
    V. Kukshal, A. Patnaik, I.K. Bhat, Mater. Today Proc. 5, 17073 (2018)CrossRefGoogle Scholar
  26. 26.
    Y. Tian, C.Y. Lu, Y. Shen, X.M. Feng, Surf. Interfaces 15, 135 (2019)CrossRefGoogle Scholar
  27. 27.
    Y.Q. Jiang, J. Li, Y.F. Juan, Z.J. Lu, W.L. Jia, J. Alloys Compd. 775, 1 (2019)CrossRefGoogle Scholar
  28. 28.
    X.W. Qiu, J. Alloys Compd. 735, 359 (2018)CrossRefGoogle Scholar
  29. 29.
    X.W. Qiu, M.J. Wu, C.G. Liu, Y.P. Zhang, C.X. Huang, Results Phys. 12, 1737 (2019)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringSichuan College of Architectural TechnologyDeyangChina

Personalised recommendations