Advertisement

DFT Theoretical Study of 5-(4-R-Phenyl)-1H-tetrazole (R = H; OCH3; CH3; Cl) as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid

  • A. A. El Hassani
  • Z. El Adnani
  • A. T. Benjelloun
  • M. Sfaira
  • M. Benzakour
  • M. Mcharfi
  • B. Hammouti
  • K. M. EmranEmail author
Article
  • 20 Downloads

Abstract

Quantum chemical study, based on DFT methods at B3LYP/6-31G (d, p) level of theory, of four tetrazole compounds, denoted Ph-T, Me-Ph-T, MeO-Ph-T, Cl-Ph-T and reported as corrosion inhibitors in acidic medium, has been investigated in an attempt to find relationships between their molecular electronic properties and their corresponding experimental corrosion inhibition efficiencies. The global reactivity descriptors, such as the frontier molecular orbital energies (EHOMO and ELUMO), energy gap ∆E, electronegativity χ, absolute hardness η and softens σ, fraction of electrons transferred ∆N as well as local selectivity parameters such as Natural Atomic Populations and Fukui indices were also calculated and discussed. The calculations were undertaken in both gaseous and aqueous states for a better approach of the experimental conditions. The results showed that Cl-Ph-T presented the lowest ELUMO and the highest χ indicating its high electron acceptor ability, which can explain its good corrosion inhibition efficiency when compared to the three-other studied tetrazole derivatives.

Graphic Abstract

Keywords

DFT calculations Phenyltetrazole derivatives Corrosion inhibitors Fukui functions PCM model 

Notes

References

  1. 1.
    Y. El Bakri, L. Guo, E.M. Essassi, J. Mol. Liq. 274, 759 (2019)CrossRefGoogle Scholar
  2. 2.
    H. Lgaz, R. Salghi, I.H. Ali, Int. J. Electrochem. Sci. 13, 250 (2018)CrossRefGoogle Scholar
  3. 3.
    N. Wazzan, S. Al-Mhyawi, Int. J. Electrochem. Sci. 12, 9812 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Ebadi, W.J. Basirun, H. Khaledi, H.M. Ali, Chem. Cent. J. 6, 163 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Elayyachy, B. Hammouti, A. El Idrissi, A. Aouniti, Port. Electrochim. Acta 29, 57 (2011)CrossRefGoogle Scholar
  6. 6.
    A.O. James, O. Akaranta, Res. J. Chem. Sci. 1, 31 (2011)Google Scholar
  7. 7.
    V.J. Gelling, M.M. Wiest, D.E. Tallman, G.P. Bierwagen, G.G. Wallace, Prog. Org. Coat. 43, 149 (2001)CrossRefGoogle Scholar
  8. 8.
    J.G.N. Thomas, in: Proceeding of the 5th European Symposium on Corrosion Inhibitors, 5 SEIC (Ann. Univ. Ferrara, Italy, 1980), p. 453Google Scholar
  9. 9.
    A. Dafali, B. Hammouti, R. Mokhlisse, S. Kertit, K. Elkacemi, Corros. Sci. 45, 1619 (2003)CrossRefGoogle Scholar
  10. 10.
    B. Donnelly, T.C. Downier, R. Grzeskowiak, H.R. Hamburg, D. Short, Corros. Sci. 18, 109 (1977)CrossRefGoogle Scholar
  11. 11.
    R.M. Issa, M.K. Awad, F.M. Atlam, Appl. Surf. Sci. 255, 2433 (2008)CrossRefGoogle Scholar
  12. 12.
    E. Khamis, Corrosion 46, 476 (1990)CrossRefGoogle Scholar
  13. 13.
    I. Forsal, M. Ebn Touhami, B. Mernari, J. El Hajri, M. Filali Baba, Port. Electrochim. Acta 28, 203 (2010)CrossRefGoogle Scholar
  14. 14.
    K. Parameswari, S. Rekha, S. Chitra, E. Kayalvizhy, Port. Electrochim. Acta 28, 189 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Elkacimi, M. Achnin, Y. Aouine, M. Ebn Touhami, R. Touir, M. Sfaira, D. Chebabe, A. Elachqar, A. Alami, B. Hammouti, Port. Electrochim. Acta 30, 53 (2012)CrossRefGoogle Scholar
  16. 16.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 (Gaussian Inc., Wallingford, 2009)Google Scholar
  17. 17.
    G. Gece, Corros. Sci. 50, 2981 (2008)CrossRefGoogle Scholar
  18. 18.
    Z. El Adnani, M. Mcharfi, M. Sfaira, M. Benzakour, A.T. Benjelloun, M. Ebn Touhami, Corros. Sci. 68, 223 (2013)CrossRefGoogle Scholar
  19. 19.
    A.D. Becke, Chem. Phys. 98, 5648 (1993)Google Scholar
  20. 20.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  21. 21.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  22. 22.
    C.C. Zhan, J.A. Nichols, D.A. Dixon, J. Phys. Chem. A 107, 4184 (2003)CrossRefGoogle Scholar
  23. 23.
    N.O. Obi-Egbedi, I.B. Obot, Corros. Sci. 53, 263 (2011)CrossRefGoogle Scholar
  24. 24.
    P. Udhayakala, T.V. Rajendiran, JCBPSC 2, 172 (2012)Google Scholar
  25. 25.
    P. Udhayakala, A. Jayanthi, T.V. Rajendiran, Der Phar. Chem. 3, 528 (2011)Google Scholar
  26. 26.
    W. Wang, W.J. Mortier, J. Am. Chem. Soc. 108, 5708 (1986)CrossRefGoogle Scholar
  27. 27.
    Z. El Adnani, M. Mcharfi, M. Sfaira, M. Benzakour, A.T. Benjelloun, M. Ebn Touhami, M. Taleb, Int. J. Electrochem. Sci. 7, 6738 (2012)Google Scholar
  28. 28.
    K.F. Khaled, Electrochim. Acta 22, 6523 (2010)CrossRefGoogle Scholar
  29. 29.
    C.C. Zhan, J.A. Nichols, D.A. Dixon, J. Phys. Chem. A 107, 4184 (2003)CrossRefGoogle Scholar
  30. 30.
    Z. El Adnani, A.T. Benjelloun, M. Benzakour, M. Mcharfi, M. Sfaira, T. Saffaj, M. Ebn Touhami, B. Hammouti, S.S. Al-Deyab, E.E. Ebenso, Int. J. Electrochem. Sci. 9, 4732 (2014)Google Scholar
  31. 31.
    K.F. Khaled, Electrochim. Acta 22, 6523 (2010)CrossRefGoogle Scholar
  32. 32.
    V.S. Sastri, J.R. Perumareddi, Corrosion 53, 617 (1997)CrossRefGoogle Scholar
  33. 33.
    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)CrossRefGoogle Scholar
  34. 34.
    K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 20, 722 (1952)CrossRefGoogle Scholar
  35. 35.
    A.O. Yuce, G. Kardas, Corros. Sci. 58, 86 (2012)CrossRefGoogle Scholar
  36. 36.
    O. Kikuchi, Quant. Struct. Act. Relat. 6, 179 (1987)CrossRefGoogle Scholar
  37. 37.
    G. Gao, C. Liang, Electrochim. Acta 52, 4554 (2007)CrossRefGoogle Scholar
  38. 38.
    N. Khalil, Electrochim. Acta 48, 2635 (2003)CrossRefGoogle Scholar
  39. 39.
    L.M. Rodriguez-Valdez, A. Martinez-Villafane, D. Glossman-Mitnik, J. Mol. Struct. 713, 65 (2005)CrossRefGoogle Scholar
  40. 40.
    A. Stoyanova, G. Petkova, S.D. Peyerimhoff, Chem. Phys. 279, 1 (2002)CrossRefGoogle Scholar
  41. 41.
    L.M. Rodriguez-Valdez, A. Martinez-Villafane, D. Glossman-Mitnik, J. Mol. Struct. 48, 4053 (2006)Google Scholar
  42. 42.
    P.W. Ayers, R.G. Parr, J. Am. Chem. Soc. 122, 2010 (2000)CrossRefGoogle Scholar
  43. 43.
    M.A. Quijano, M.P. Pardav, A. Cuán, M.R. Romo, G.N. Silva, R.Á. Bustamante, A.R. López, H.H. Hernández, Int. J. Electrochem. Sci. 6, 3729 (2011)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Laboratoire d’Ingénierie des Matériaux, de Modélisation et d’Environnement, Faculté des SciencesUniversité Sidi Mohamed Ben Abdellah (USMBA)Fès-AtlasMorocco
  2. 2.Laboratory of Applied Chemistry and Environment, Faculty of ScienceMohammed Premier UniversityOujdaMorocco
  3. 3.Department of Chemistry, College of ScienceTaibah UniversityAl-Madinah Al-MonawarahSaudi Arabia

Personalised recommendations