Advertisement

Hardness and Transverse Rupture Strength of TiC-Reinforced SKD11 Steel Matrix Composite

  • Seong Hoon Kim
  • Dae Ha Kim
  • Won Hyuk Rhee
  • Dong-Woo SuhEmail author
Article
  • 12 Downloads

Abstract

We investigate the effect of heat treatment on the hardness and transverse rupture strength (TRS) in the particulate TiC-reinforced SKD11 steel matrix composites, fabricated by a pressure infiltration casting process. A tempering process softens the composite as-quenched from the austenitization; however the hardness rebounds once the unstable austenite transforms into martensite upon cooling from higher tempering temperature. The fracture strength of steel matrix as well as the fraction and size of reinforcement is likely to affect the TRS of composite. For a given fraction of the TiC reinforcement, higher fracture strength of steel matrix is advantageous to achieve better TRS. Moreover, a refinement of TiC size makes the TRS of the composite more responsive to the change of fracture strength of steel matrix; increasing the fracture strength of steel matrix brings about more improvement of TRS. Thus, smaller TiC reinforcement size provides a better chance to control of TRS of the composite by altering the properties of steel matrix using a heat treatment.

Graphic Abstract

Keywords

TiC Reinforcement Steel matrix composite Tempering Transverse rupture strength 

Notes

Acknowledgements

This study was financially supported by the Civil Military Technology Cooperation Center, the Agency for Defense Development (ADD), Republic of Korea (14-CM-MP-03).

References

  1. 1.
    K.U. Kainer, Metal matrix composites: custom-made materials for automotive and aerospace engineering (Wiley, Weinheim, 2006), pp. 1–4CrossRefGoogle Scholar
  2. 2.
    K.I. Parashivamurthy, R.K. Kumar, S. Seetharamu, M.N. Chandrasekharaiah, Review on TiC reinforced steel composites. J. Mater. Sci. 36(18), 4519–4530 (2001)CrossRefGoogle Scholar
  3. 3.
    F. Akhtar, Ceramic reinforced high modulus steel composites: processing, microstructure and properties. Can. Metall. Q. 53(3), 253–263 (2014)CrossRefGoogle Scholar
  4. 4.
    E. Pagounis, V.K. Lindroos, Processing and properties of particulate reinforced steel matrix composites. Mater. Sci. Eng., A 246(1–2), 221–234 (1998)CrossRefGoogle Scholar
  5. 5.
    J.M. Howe, Bonding, structure, and properties of metal/ceramic interfaces: part 1 chemical bonding, chemical reaction, and interfacial structure. Int. Mater. Rev. 38(5), 233–256 (1993)CrossRefGoogle Scholar
  6. 6.
    N.R. Oh, S.K. Lee, K.C. Hwang, H.U. Hong, Characterization of microstructure and tensile fracture behavior in a novel infiltrated TiC–steel composite. Scr. Mater. 112, 123–127 (2016)CrossRefGoogle Scholar
  7. 7.
    S.H. Kim, D.H. Kim, K.C. Hwang, S.B. Lee, S.K. Lee, H.U. Hong, D.W. Suh, Heat treatment response of TiC-reinforced steel matrix composite. Met. Mater. Int. 22(5), 935–941 (2016)CrossRefGoogle Scholar
  8. 8.
    J.I. Hwang, S.H. Kim, Y.U. Heo, D.H. Kim, K.C. Hwang, D.W. Suh, Tempering behavior of TiC-reinforced SKD11 steel matrix composite. Met. Mater. Int. 24(3), 644–651 (2018)CrossRefGoogle Scholar
  9. 9.
    S. Cho, I. Jo, H. Kim, H.T. Kwon, S.K. Lee, S.B. Lee, Effect of TiC addition on surface oxidation behavior of SKD11 tool steel composites. Appl. Surf. Sci. 415, 155–160 (2017)CrossRefGoogle Scholar
  10. 10.
    Y.H. Lee, S. Ko, H. Park, D. Lee, S. Shin, I. Jo, S.B. Lee, S.K. Lee, Y. Kim, S. Cho, Effect of TiC particle size on high temperature oxidation behavior of TiC reinforced stainless steel. Appl. Surf. Sci. 480, 951–955 (2019)CrossRefGoogle Scholar
  11. 11.
    S.B. Lee, S.K. Lee, J. H. Byeon, A high hardness composites and method for manufacturing thereof. Republic of Korea Patent KR101537406B1, 02 May 2013Google Scholar
  12. 12.
    J. Gurland, P. Bardzil, Relations of strength, composition, and grain size of sintered WC–Co alloys. JOM 7(2), 311–315 (1955)CrossRefGoogle Scholar
  13. 13.
    J. Gurland, The fracture strength of sintered tungsten carbide–cobalt alloys. Trans. Met. Soc. AIME 227, 1146–1150 (1963)Google Scholar
  14. 14.
    H.E. Exner, J. Gurland, A review of parameters influencing some mechanical properties of tungsten carbide–cobalt alloys. Powder Metall. 13(25), 13–31 (1970)CrossRefGoogle Scholar
  15. 15.
    T. Sadahiro, Transverse rupture strength and fracture toughness of WC-Co alloys. J. Jpn. Inst. Met. 45, 291–295 (1981)CrossRefGoogle Scholar
  16. 16.
    C. Chatfield, Comments on microstructure and transverse rupture strength of cemented carbides. Int. J. Refract. Hard Met. 4(1), 48 (1985)Google Scholar
  17. 17.
    G.W. Greenwood, in Proceedings of the 17th Annual BICTA Conference Stratford-UponAvon, (British Investment Casters Trade Association, Alvechurch, 1983), pp. 11:1–11:8Google Scholar
  18. 18.
    H.V. Atkinson, S. Davies, Fundamental aspects of hot isostatic pressing: an overview. Metall. Mater. Trans. A 31(12), 2981–3000 (2000)CrossRefGoogle Scholar
  19. 19.
    Z.Z. Fang, Correlation of transverse rupture strength of WC–Co with hardness. Int. J. Refract. Met. Hard Mater. 23(2), 119–127 (2005)CrossRefGoogle Scholar
  20. 20.
    S. Cho, Y.H. Lee, S. Ko, H.J. Park, D. Lee, S. Shin, I. Jo, S.K. Lee, S.B. Lee, Fabrication of ceramic particulate reinforced steel composites by liquid pressing infiltration process. Compos. Res. 31(4), 117–121 (2018)Google Scholar
  21. 21.
    W.E. Bryson, Heat treatment, selection, and application of tool steels (Hanser Gardner Publications, Cincinnati, 2005), pp. 29–48CrossRefGoogle Scholar
  22. 22.
    KS D ISO 3325, Sintered Materials, Excluding Hard Metals—Determination of Transverse Rupture Strength (Korean Standards Association, Seoul, 2011)Google Scholar
  23. 23.
    ASTM E8/E8 M-16a, Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, 2016)Google Scholar
  24. 24.
    ASTM E562-11, Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count (ASTM International, West Conshohocken, 2011)Google Scholar
  25. 25.
    F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Amsterdam, 2012), p. 639Google Scholar
  26. 26.
    M. Foller, H. Meyer, in Proceedings of the 6th International Tooling Conference, ed by J. Bergström, G. Fredriksson, M. Johansson, O. Kotik, F. Thuvander, (Karlstad University, Karlstad, 2002), pp. 1373–1389Google Scholar
  27. 27.
    G.A. Roberts, R. Kennedy, G. Krauss, Tool Steels, 5th edn. (ASM International, Materials Park, 1998), p. 101Google Scholar
  28. 28.
    E. Durnberg, K. Knipe, G. Freihofer, I. Hanhan, R. Feng, S. Raghavan, Particle Size Effect on Load Transfer in Single Particle Composite Samples via X-Ray Diffraction. in 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, (2015) pp. 1124–1132Google Scholar
  29. 29.
    E. Durnberg, Load Transfer in an Isolated Particle Embedded within an Epoxy Matrix (University of Central Florida, Orlando, 2014), pp. 36–49Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Seong Hoon Kim
    • 1
  • Dae Ha Kim
    • 2
  • Won Hyuk Rhee
    • 2
  • Dong-Woo Suh
    • 1
    Email author
  1. 1.Graduate Institute of Ferrous TechnologyPOSTECHPohangRepublic of Korea
  2. 2.DAT Advanced MaterialDangjinRepublic of Korea

Personalised recommendations