Advertisement

Processing Parameters that Affect the Tolerable Bending Diameter of Reacted MgB2 Wires

  • Byeongha Yoo
  • Young-Gyun Kim
  • Jiman Kim
  • Sehoon Jang
  • Duck Young Hwang
  • Jung Tae Lee
  • Yeon Suk Choi
  • Seungyong Hahn
  • Haigun LeeEmail author
Article
  • 5 Downloads

Abstract

In this study, tolerable bending diameters of reacted MgB2 wires fabricated to produce varying outer sheath materials, numbers of MgB2 filaments, and sheath layer thickness were investigated. The result showed that the tolerable bending diameters of the MgB2 wires with Cu, Cu–Ni, and Monel sheaths were the same. This implies that the sheath material strength of these wires does not affect the tolerable bending diameter. In addition, mono-filament wires were more vulnerable to bending strain than multi-filament wires due to their porous microstructure. An increase in the sheath layer thickness of the MgB2 wires resulted in less degradation of the wires at high bending strains because the strain acting on the MgB2 filaments was reduced by the thick sheath layer. This study generally confirmed that the sheath layer thickness of the MgB2 wire is a key factor to increase the bending tolerance of the wire.

Keywords

Bending diameter Magnesium diboride (MgB2Bending test Bending strain Sheath materials Tolerable 

Notes

Acknowledgements

This work was supported by the Materials and Components Technology Development Program of KEIT (10053590, Development of MgB2 wire and coil with a high critical current and long length for superconducting medical electric power equipment) and in part by the Korea Basic Science Institute under Grant D38614.

References

  1. 1.
    A. Matsumoto, H. Kumakura, IEEE Trans. Appl. Supercond. 28, 1 (2018)Google Scholar
  2. 2.
    H. Tanaka, T. Suzuki, M. Kodama, Y. Ichiki, T. Haba, K. Okamoto, IEEE Trans. Appl. Supercond. 28, 1 (2018)Google Scholar
  3. 3.
    G. Nishijima, S.J. Ye, A. Matsumoto, K. Togano, H. Kumakura, H. Kitaguchi, H. Oguro, Supercond. Sci. Technol. 25, 054012 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Ye, M. Song, A. Matsumoto, K. Togano, M. Takeguchi, T. Ohmura, H. Kumakura, Supercond. Sci. Technol. 26, 125003 (2013)CrossRefGoogle Scholar
  5. 5.
    B. Yoo, J.B. Song, J.C. Kim, Y.G. Kim, J.M. Kim, K.H. Sim, I.S. Shin, D.Y. Hwang, H.G. Lee, IEEE Trans. Appl. Supercond. 28, 1 (2018)CrossRefGoogle Scholar
  6. 6.
    R. Musenich, P. Fabbricatore, S. Farinon, C. Ferdeghini, G. Grasso, M. Greco, A. Malagoli, R. Marabotto, M. Modica, D. Nardelli, A.S. Siri, M. Tassisto, A. Tumino, IEEE Trans. Appl. Supercond. 15, 1452 (2005)CrossRefGoogle Scholar
  7. 7.
    R. Musenich, P. Fabbricatore, C. Fanciulli, C. Ferdeghini, G. Grasso, M. Greco, A. Malagoli, R. Marabotto, M. Modica, A. Siri, A. Tumino, IEEE Trans. Appl. Supercond. 14, 365 (2004)CrossRefGoogle Scholar
  8. 8.
    R. Musenich, P. Fabbricatore, S. Farinon, M. Greco, M. Modica, R. Marabotto, R. Penco, M. Razeti, D. Nardelli, Supercond. Sci. Technol. 19, S126 (2006)CrossRefGoogle Scholar
  9. 9.
    M.D. Sumption, S. Bohnenstiehl, F. Buta, M. Majoros, S. Kawabata, M. Tomsic, M. Rindfleisch, J. Phillips, J. Yue, E.W. Collings, IEEE Trans. Appl. Supercond. 17, 2286 (2007)CrossRefGoogle Scholar
  10. 10.
    R. Pasquet, C. Berriaud, F. Forest, C. Hilaire, F. Juster, A. Porhiel, T. Schild, L. Scola, A. Taleb, IEEE Trans. Appl. Supercond. 25, 4603605 (2015)CrossRefGoogle Scholar
  11. 11.
    R. Pasquet, A. Bonelli, C. Berriaud, F. Juster, H. Przybilski, B. Reynard, T. Schild, L. Scola, IEEE Trans. Appl. Supercond. 24, 9500805 (2014)CrossRefGoogle Scholar
  12. 12.
    P. Kováč, I. Hušek, T. Melišek, M. Kulich, L. Kopera, Supercond. Sci. Technol. 29, 045002 (2016)CrossRefGoogle Scholar
  13. 13.
    P. Kováč, L. Kopera, T. Melišek, G. Sarmiento, S.S. Castillo, S. Brisigotti, D. Nardelli, M. Tropeano, IEEE Trans. Appl. Supercond. 25, 6200607 (2015)Google Scholar
  14. 14.
    Y. Yang, G. Li, M. Susner, M.D. Sumption, M. Rindfleisch, M. Tomsic, E.W. Collings, Phys. C 519, 118 (2015)CrossRefGoogle Scholar
  15. 15.
    K. Sedlak, P. Bruzzone, X. Sarasola, B. Stepanov, R. Wesche, IEEE Trans. Appl. Supercond. 27, 1 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Fu, J. Chen, Z. Jiao, H. Kumakura, K. Togano, L. Ding, Y. Zhang, Z. Chen, H. Han, J. Chen, Phys. C 406, 53 (2004)CrossRefGoogle Scholar
  17. 17.
    K. Salama, Y.X. Zhou, M. Hanna, M. Alessandrini, P.T. Putman, H. Fang, Supercond. Sci. Technol. 18, S369 (2005)CrossRefGoogle Scholar
  18. 18.
    K. Katagiri, R. Takaya, K. Kasaba, K. Tachikawa, Y. Yamada, S. Shimura, N. Koshizuka, K. Watanabe, Supercond. Sci. Technol. 18, S351 (2005)CrossRefGoogle Scholar
  19. 19.
    P. Kováč, L. Kopera, T. Melišek, M. Rindfleisch, W. Haessler, I. Hušek, Supercond. Sci. Technol. 26, 105028 (2013)CrossRefGoogle Scholar
  20. 20.
    P. Kováč, M. Kulich, L. Kopera, T. Melišek, J. Kováč, I. Hušek, Supercond. Sci. Technol. 3, 065006 (2017)Google Scholar
  21. 21.
    P. Kováč, L. Kopera, IEEE Trans. Appl. Supercond. 22, 8400106 (2012)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
  2. 2.R&D Team 3Kiswire Advanced Technology Co., LtdDaejeonRepublic of Korea
  3. 3.Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
  4. 4.The Spin Engineering Physics TeamKorea Basic Science InstituteDaejeonRepublic of Korea

Personalised recommendations