Dry Sliding Wear Behavior of (MWCNT + GNPs) Reinforced AZ91 Magnesium Matrix Hybrid Composites

  • Muhammet Emre TuranEmail author
  • Huseyin Zengin
  • Yavuz Sun


This study aims to improve tribological performance of magnesium alloy with the addition of carbonaceous (C-based) reinforcements. Synergetic effects of MWCNT and GNPs on wear performance of AZ91 magnesium alloy was evaluated with this report. AZ91-0.3 wt% MWCNT and AZ91-0.15 wt% MWCNT-0.15 wt% GNPs hybrid composites were synthesized using hot pressing via semi powder metallurgy. Microstructures were examined by scanning electron microscope and x-ray diffraction test devices then hardness and wear tests were performed for all samples. Results clearly show that hardness and wear behaviors of AZ91 magnesium alloy were improved significantly with the addition of reinforcements. Uniform distribution of carbon atoms was achieved for both of two samples. AZ91-0.15 wt% MWCNT-0.15 wt% GNPs composite showed best wear performance among the specimens.

Graphical Abstract


Magnesium MWCNT GNPs Hybrid Wear 



  1. 1.
    M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851–865 (2008)CrossRefGoogle Scholar
  2. 2.
    Q.C. Jiang, H.Y. Wang, B.-X. Ma, Y. Wang, F. Zhao, Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy. J. Alloys Compd. 386, 177–181 (2005)CrossRefGoogle Scholar
  3. 3.
    H. Zhou, L. Hu, H. Sun, X. Chen, Synthesis of nanocrystalline Mg-based Mg–Ti composite powders by mechanical milling. Mater. Charact. 106, 44–51 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Rashad, F. Pan, J. Zhang, M. Asif, Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy. J. Alloys Compd. 646, 223–232 (2015)CrossRefGoogle Scholar
  5. 5.
    K.A. Kumar, U.T.S. Pillai, B.C. Pai, M. Chakraborty, Dry sliding wear behaviour of Mg–Si alloys. Wear 303, 56–64 (2013)CrossRefGoogle Scholar
  6. 6.
    J. Feng, H. Sun, X. Li, J. Zhang, W. Fang, W. Fang, Microstructures and mechanical properties of the ultrafine-grained Mg–3Al–Zn alloys fabricated by powder metallurgy. Adv. Powder Technol. 27, 550–556 (2016)CrossRefGoogle Scholar
  7. 7.
    D. Jeyasimman, S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, R.S. Kambali, An investigation of the synthesis, consolidation and mechanical behaviour of Al 6061 nanocomposites reinforced by TiC via mechanical alloying. Mater. Des. 57, 394–404 (2014)CrossRefGoogle Scholar
  8. 8.
    A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Compos. Part Appl. Sci. Manuf. 42, 234–243 (2011)CrossRefGoogle Scholar
  9. 9.
    X. Yuan, S. Huang, Microstructural characterization of MWCNTs/magnesium alloy composites fabricated by powder compact laser sintering. J. Alloys Compd. 620, 80–86 (2015)CrossRefGoogle Scholar
  10. 10.
    O. Carvalho, M. Buciumeanu, G. Miranda, N. Costa, D. Soares, F.S. Silva, Mechanisms governing the tensile, fatigue, and wear behavior of carbon nanotube reinforced aluminum alloy. Mech. Adv. Mater. Struct. 23, 917–925 (2016). CrossRefGoogle Scholar
  11. 11.
    M. Rashad, F. Pan, M. Asif, Exploring mechanical behavior of Mg–6Zn alloy reinforced with graphene nanoplatelets. Mater. Sci. Eng. A 649, 263–269 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Su, Y. Zhang, J. Song, L. Hu, Tribological behavior and lubrication mechanism of self-lubricating ceramic/metal composites: the effect of matrix type on the friction and wear properties. Wear 372, 130–138 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Tabandeh-Khorshid, E. Omrani, P.L. Menezes, P.K. Rohatgi, Tribological performance of self-lubricating aluminum matrix nanocomposites: role of graphene nanoplatelets. Eng. Sci. Technol. Int. J. 19, 463–469 (2016)CrossRefGoogle Scholar
  14. 14.
    P.K. Rohatgi, M. Tabandeh-Khorshid, E. Omrani, M.R. Lovell, P.L. Menezes, Tribology of metal matrix composites, in Tribology for scientists and engineers, ed. by P.L. Menezes, M. Nosonovsky, S.P. Ingole, S.V. Kailas, M.R. Lovell (Springer, Berlin, 2013), pp. 233–268CrossRefGoogle Scholar
  15. 15.
    K. Rajkumar, S. Aravindan, Tribological behavior of microwave processed copper–nanographite composites. Tribol. Int. 57, 282–296 (2013)CrossRefGoogle Scholar
  16. 16.
    A.D. Moghadam, B.F. Schultz, J.B. Ferguson, E. Omrani, P.K. Rohatgi, N. Gupta, Functional metal matrix composites: self-lubricating, self-healing, and nanocomposites-an outlook. JOM 66, 872–881 (2014)CrossRefGoogle Scholar
  17. 17.
    Q. Ahsan, Z.W. Tee, S. Rahmah, S.Y. Chang, M. Warikh, Wear and friction behaviour of magnesium hybrid composites containing silicon carbide and multi-walled carbon nanotubes. Adv. Mater. Process. Technol. 2, 303–317 (2016)Google Scholar
  18. 18.
    M. Rashad, F. Pan, M. Asif, A. Tang, Powder metallurgy of Mg–1% Al–1% Sn alloy reinforced with low content of graphene nanoplatelets (GNPs). J. Ind. Eng. Chem. 20, 4250–4255 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Rashad, F. Pan, A. Tang, M. Asif, S. Hussain, J. Gou, J. Mao, Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al + GNPs) using semi powder metallurgy method. J. Ind. Eng. Chem. 23, 243–250 (2015)CrossRefGoogle Scholar
  20. 20.
    B. Selvam, P. Marimuthu, R. Narayanasamy, V. Anandakrishnan, K.S. Tun, M. Gupta, M. Kamaraj, Dry sliding wear behaviour of zinc oxide reinforced magnesium matrix nano-composites. Mater. Des. 58, 475–481 (2014)CrossRefGoogle Scholar
  21. 21.
    R.V.P. Kaviti, D. Jeyasimman, G. Parande, M. Gupta, R. Narayanasamy, Investigation on dry sliding wear behavior of Mg/BN nanocomposites. J. Magnes Alloys 6, 263–276 (2018)CrossRefGoogle Scholar
  22. 22.
    M. Srinivasan, C. Loganathan, M. Kamaraj, Q.B. Nguyen, M. Gupta, R. Narayanasamy, Sliding wear behaviour of AZ31B magnesium alloy and nano-composite. Trans. Nonferrous Met. Soc. China 22, 60–65 (2012). CrossRefGoogle Scholar
  23. 23.
    R.A. Saravanan, M.K. Surappa, Fabrication and characterisation of pure magnesium. Mater. Sci. Eng. A 276, 108–116 (2000). CrossRefGoogle Scholar
  24. 24.
    M.F. Ashby, J. Abulawi, H.S. Kong, Temperature maps for frictional heating in dry sliding. Tribol. Trans. 34, 577–587 (1991)CrossRefGoogle Scholar
  25. 25.
    J. An, R.G. Li, Y. Lu, C.M. Chen, Y. Xu, X. Chen, L.M. Wang, Dry sliding wear behavior of magnesium alloys. Wear 265, 97–104 (2008)CrossRefGoogle Scholar
  26. 26.
    N.N. Aung, W. Zhou, L.E. Lim, Wear behaviour of AZ91D alloy at low sliding speeds. Wear 265, 780–786 (2008)CrossRefGoogle Scholar
  27. 27.
    M.A. Chowdhury, M.K. Khalil, D.M. Nuruzzaman, M.L. Rahaman, The effect of sliding speed and normal load on friction and wear property of aluminum. Int. J. Mech. Mechatron. Eng. 11, 53–57 (2011)Google Scholar
  28. 28.
    S. García-Rodríguez, B. Torres, A. Maroto, A.J. López, E. Otero, J. Rams, Dry sliding wear behavior of globular AZ91 magnesium alloy and AZ91/SiCp composites. Wear 390, 1–10 (2017)CrossRefGoogle Scholar
  29. 29.
    B.M. Girish, B.M. Satish, S. Sarapure, D.R. Somashekar, Basawaraj: wear behavior of magnesium alloy AZ91 hybrid composite materials. Tribol. Trans. 58, 481–489 (2015)CrossRefGoogle Scholar
  30. 30.
    M.J.H. Cowap, S.R.M. Moghaddam, P.L. Menezes, K.E. Beschorner, Contributions of adhesion and hysteresis to coefficient of friction between shoe and floor surfaces: effects of floor roughness and sliding speed. Tribol. Mater. Surf. Interfaces 9, 77–84 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Muhammet Emre Turan
    • 1
    Email author
  • Huseyin Zengin
    • 1
  • Yavuz Sun
    • 1
  1. 1.Metallurgical and Materials Engineering DepartmentKarabuk UniversityKarabukTurkey

Personalised recommendations