Advertisement

Metals and Materials International

, Volume 26, Issue 2, pp 205–220 | Cite as

Characterization of Ti6Al4V–Ti6Al4V/30Ta Bilayer Components Processed by Powder Metallurgy for Biomedical Applications

  • Jorge Chávez
  • Omar Jiménez Alemán
  • Martín Flores Martínez
  • Héctor J. Vergara-Hernández
  • Luis OlmosEmail author
  • Pedro Garnica-González
  • Didier Bouvard
Article
  • 105 Downloads

Abstract

The design and fabrication of a bilayer Ti6Al4V–Ti6Al4V/30Ta component were performed by using the powder metallurgy process and solid-state sintering as the consolidation step. Phase change and sintering densification of the component were studied by dilatometry. The addition of 30 vol% of Ta to the Ti6Al4V matrix had a noticeable effect over the microstructural and mechanical properties of the alloy, which showed decrements of up to 12.2 and 21.5% in nano-hardness and elastic modulus, respectively. The decrement of these properties strongly affected the wear and corrosion performance of the component. Special attention was focused on the intermediate zone between layers denoted by a transition zone, which presented better wear response because of the properties and microstructure caused by the gradient diffusion of Ta. Ti6Al4V/30Ta alloy showed an improved corrosion behaviour compared to Ti6Al4V alloy, decreasing 2.4 times their susceptibility to corrosion and about two orders of magnitude their corrosion rate. The bilayer component in this study is proposed as an alternative to decrease the consumption of expensive materials with improved properties.

Graphic Abstract

Keywords

Sintering Bilayer component Microstructural characterization Wear Corrosion Nanoindentation 

Notes

Acknowledgements

The authors thank the Mexican Council of Science and Technology (CONACyT) for the support given to Dr. Chávez (postdoctoral fellow, 000614) and at the CIC of the University Michoacana de San Nicolas de Hidalgo for the financial and technical support during the development of this research.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    C. Marker, S.-L. Shang, J.-C. Zhao, Z.-K. Liu, Comput. Mater. Sci. 142, 215–226 (2018)Google Scholar
  2. 2.
    H.B. Waterson, M.R. Whitehouse, N.V. Greidanus, D.S. Garbuz, B.A. Masri, C.P. Duncan, Bone Joint J. 100-B, 720–724 (2018)Google Scholar
  3. 3.
    J.B. Stambough, J.B. Mason, A.M. Riesgo, T.K. Fehring, Arthroplasty Today 4, 3–9 (2018)Google Scholar
  4. 4.
    M. Bahraminasab, B. Sahari, K. Edwards, F. Farahmand, M. Arumugam, T.S. Hong, Mater. Des. 42, 459–470 (2012)Google Scholar
  5. 5.
    Y. Oshida, Bioscience and Bioengineering of Titanium Materials (Elsevier, Amsterdam, 2010)Google Scholar
  6. 6.
    S. Datta, M. Das, V.K. Balla, S. Bodhak, V.K. Murugesan, Surf. Coat. Technol. 344, 214–222 (2018)Google Scholar
  7. 7.
    J.L. Cabezas-Villa, L. Olmos, D. Bouvard, J. Lemus-Ruiz, O. Jiménez, J. Mater. Res. 33, 650–661 (2018)Google Scholar
  8. 8.
    Q. Wang, Y. Qiao, M. Cheng, G. Jiang, G. He, Y. Chen, X. Zhang, X. Liu, Sci. Rep. 6, 26248 (2016)Google Scholar
  9. 9.
    J. Ruan, H. Yang, X. Weng, J. Miao, K. Zhou, J. Mater. Sci. Mater. Med. 27, 76 (2016)Google Scholar
  10. 10.
    A. Santos-Coquillat, R. Gonzalez-Tenorio, M. Mohedano, E. Martinez-Campos, R. Arrabal, E. Matykina, Appl. Surf. Sci. 454, 157–172 (2018)Google Scholar
  11. 11.
    A. Gao, R. Hang, L. Bai, B. Tang, P.K. Chu, Electrochim. Acta 271, 699–718 (2018)Google Scholar
  12. 12.
    H. Shahali, A. Jaggessar, P.K.D.V. Yarlagadda, Proc. Eng. 174, 1067–1076 (2017)Google Scholar
  13. 13.
    K. Ren, W. Yue, H. Zhang, Surf. Coat. Technol. 349, 602–610 (2018)Google Scholar
  14. 14.
    L. Shi, L. Shi, L. Wang, Y. Duan, W. Lei, Z. Wang, J. Li, X. Fan, X. Li, S. Li, Z. Guo, PLoS ONE 8, e55015 (2013)Google Scholar
  15. 15.
    C. Torres-Sanchez, J. McLaughlin, A. Fotticchia, J. Alloys Compd. 731, 189–199 (2018)Google Scholar
  16. 16.
    Y. Torres, S. Lascano, J. Bris, J. Pavón, J.A. Rodriguez, Mater. Sci. Eng., C 37, 148–155 (2014)Google Scholar
  17. 17.
    D.R.N. Correa, P.A.B. Kuroda, M.L. Lourenço, C.J.C. Fernandes, M.A.R. Buzalaf, W.F. Zambuzzi, C.R. Grandini, J. Alloys Compd. 749, 163–171 (2018)Google Scholar
  18. 18.
    M. Niinomi, M. Nakai, J. Hieda, Acta Biomater. 8, 3888–3903 (2012)Google Scholar
  19. 19.
    G. Dercz, I. Matuła, M. Zubko, A. Kazek-Kęsik, J. Maszybrocka, W. Simka, J. Dercz, P. Świec, I. Jendrzejewska, Mater. Charact. 142, 124–136 (2018)Google Scholar
  20. 20.
    Y. Liu, K. Li, H. Wu, M. Song, W. Wang, N. Li, H. Tang, J. Mech. Behav. Biomed. Mater. 51, 302–312 (2015)Google Scholar
  21. 21.
    B. Rahmati, A.A.D. Sarhan, W.J. Basirun, W.A.B.W. Abas, J. Alloys Compd. 676, 369–376 (2016)Google Scholar
  22. 22.
    G. Xu, X. Shen, Y. Hu, P. Ma, K. Cai, Surf. Coat. Technol. 272, 58–65 (2015)Google Scholar
  23. 23.
    G. Li, X. Sui, C. Jiang, Y. Gao, K. Wang, Q. Wang, D. Liu, Mater. Des. 110, 105–111 (2016)Google Scholar
  24. 24.
    C.Y. Wu, Y.H. Xin, X.F. Wang, J.G. Lin, Solid State Sci. 12, 2120–2124 (2010)Google Scholar
  25. 25.
    V.K. Balla, S. Banerjee, S. Bose, A. Bandyopadhyay, Acta Biomater. 6, 2329–2334 (2010)Google Scholar
  26. 26.
    P. Gill, N. Munroe, C. Pulletikurthi, S. Pandya, W. Haider, J. Mater. Eng. Perform. 20, 819–823 (2011)Google Scholar
  27. 27.
    Y. Yamabe, J. Umeda, H. Imai, K. Kondoh, Mater. Trans. 59, 61–65 (2018)Google Scholar
  28. 28.
    H. Attar, S. Ehtemam-Haghighi, D. Kent, M.S. Dargusch, Int. J. Mach. Tools Manuf 133, 85–102 (2018)Google Scholar
  29. 29.
    R. Karre, B.K. Kodli, A. Rajendran, J. Nivedhitha, D.K. Pattanayak, K. Ameyama, S.R. Dey, Mater. Sci. Eng. C 94, 619–627 (2019)Google Scholar
  30. 30.
    D. Mereib, U.C.C. Seu, M. Zakhour, M. Nakhl, N. Tessier-Doyen, J.-L. Bobet, J.-F. Silvain, J. Mater. Sci. 53, 7857–7868 (2018)Google Scholar
  31. 31.
    J. Chávez, L. Olmos, O. Jiménez, D. Bouvard, E. Rodríguez, M. Flores, Powder Metall. 60, 257–266 (2017)Google Scholar
  32. 32.
    S.J.L. Kang, Sintering: Densification, Grain Growth and Microstructure (Elsevier, Amsterdam, 2004)Google Scholar
  33. 33.
    R.M. German, Sintering Theory and Practice (Wiley, New York, 1996)Google Scholar
  34. 34.
    S. Xu, Y. Liu, C. Yang, H. Zhao, B. Liu, J. Li, M. Song, Mater. Sci. Eng., A 712, 386–393 (2018)Google Scholar
  35. 35.
    Y.-L. Zhou, M. Niinomi, Mater. Sci. Eng., C 29, 1061–1065 (2009)Google Scholar
  36. 36.
    J.L. Cabezas-Villa, L. Olmos, J. Lemus-Ruiz, D. Bouvard, J. Chavez, O. Jimenez, V. Manuel Solorio, EPJ Web Conf. 140, 13007 (2017)Google Scholar
  37. 37.
    D. Džunić, S. Mitrović, M. Babić, I. Bobić, M. Pantić, D. Adamović, B. Nedeljković, Tribol. Ind. 37, 413 (2015)Google Scholar
  38. 38.
    M.E. Maja, O.E. Falodun, B.A. Obadele, S.R. Oke, P.A. Olubambi, Ceram. Int. 44, 4419–4425 (2018)Google Scholar
  39. 39.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564–1583 (1992)Google Scholar
  40. 40.
    T. Kokubo, H. Takadama, Biomaterials 27, 2907–2915 (2006)Google Scholar
  41. 41.
    A. Greco, A. Strafella, C.L. Tegola, A. Maffezzoli, Polym. Compos. 32, 657–664 (2011)Google Scholar
  42. 42.
    K. Youngmoo, S. Young-Beom, L. Sung Ho, J. Korean Powder Metall. Inst. 25, 109–119 (2018)Google Scholar
  43. 43.
    X. Xu, P. Nash, D. Mangabhai, J. Miner. Metals Mater. Soc. 69, 770–775 (2017)Google Scholar
  44. 44.
    A. Gupta, R.K. Khatirkar, A. Kumar, M.S. Parihar, J. Mater. Res. 33, 946–957 (2018)Google Scholar
  45. 45.
    X. Xu, P. Nash, Mater. Sci. Eng., A 607, 409–416 (2014)Google Scholar
  46. 46.
    K. Das, S. Das, J. Phase Equilib. Diffus. 26, 322–329 (2005)Google Scholar
  47. 47.
    H. Baker, A.S.M. Handbook, Alloy Phase Diagrams (ASM International, Novelty, 1992)Google Scholar
  48. 48.
    Y.-L. Zhou, M. Niinomi, J. Alloys Compd. 466, 535–542 (2008)Google Scholar
  49. 49.
    F. Zhang, S. Liu, P. Zhao, T. Liu, J. Sun, Mater. Des. 131, 144–155 (2017)Google Scholar
  50. 50.
    H.Y. Kim, S. Miyazaki, Mater. Trans. 56, 625–634 (2015)Google Scholar
  51. 51.
    Z. Feng, Y. Yang, Z. Xu, Q. Shi, Mater. Res. 21, 1–8 (2018)Google Scholar
  52. 52.
    J. Xu, W. Zeng, Y. Zhao, X. Sun, Z. Du, J. Alloys Compd. 688, 301–309 (2016)Google Scholar
  53. 53.
    N. Kherrouba, M. Bouabdallah, R. Badji, D. Carron, M. Amir, Mater. Chem. Phys. 181, 462–469 (2016)Google Scholar
  54. 54.
    F. Sun, J. Li, H. Kou, B. Tang, Y. Chen, H. Chang, J. Cai, J. Alloys Compd. 576, 108–113 (2013)Google Scholar
  55. 55.
    W.B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys: International Series of Monographs on Metal Physics and Physical Metallurgy (Elsevier, Amsterdam, 2013)Google Scholar
  56. 56.
    Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, M. Free, Int. Mater. Rev. 63, 407–459 (2017)Google Scholar
  57. 57.
    G. Lütjering, J.C. Williams, Titanium (Springer, Berlin, 2013)Google Scholar
  58. 58.
    V.A. Joshi, Titanium Alloys: An Atlas of Structures and Fracture Features (CRC Press, Boca Raton, 2006)Google Scholar
  59. 59.
    A.O. Adegbenjo, E. Nsiah-Baafi, M.B. Shongwe, M. Ramakokovhu, P.A. Olubambi, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 10, 541–547 (2016)Google Scholar
  60. 60.
    Q. Zhou, Y. Ren, Y. Du, W. Han, D. Hua, H. Zhai, P. Huang, F. Wang, H. Wang, J. Alloys Compd. 780, 671–679 (2019)Google Scholar
  61. 61.
    T.L.M. Morgado, H. Navas, R. Brites, Proc. Struct. Integr. 2, 1266–1276 (2016)Google Scholar
  62. 62.
    L.P. Luzhnikov, V.M. Novikova, A.P. Mareev, Metal Sci. Heat Treat. 5, 78–81 (1963)Google Scholar
  63. 63.
    B.A. Obadele, O.E. Falodun, S.R. Oke, P.A. Olubambi, Part. Sci. Technol. (2018).  https://doi.org/10.1080/02726351.2018.1515798 CrossRefGoogle Scholar
  64. 64.
    D. Mareci, R. Chelariu, G. Ciurescu, D. Sutiman, T. Gloriant, Mater. Corros. 61, 768–774 (2010)Google Scholar
  65. 65.
    J. Kesteven, M.B. Kannan, R. Walter, H. Khakbaz, H.C. Choe, Mater. Sci. Eng. C Mater. Biol. Appl. 46, 226–231 (2015)Google Scholar
  66. 66.
    B. Becker, J. Bolton, J. Mater. Sci. Mater. Med. 8, 793–797 (1997)Google Scholar
  67. 67.
    K.H.W. Seah, R. Thampuran, X. Chen, S.H. Teoh, Corros. Sci. 37, 1333–1340 (1995)Google Scholar
  68. 68.
    D. Blackwood, A. Chua, K. Seah, R. Thampuran, S. Teoh, Corros. Sci. 42, 481–503 (2000)Google Scholar
  69. 69.
    K.H.W. Seah, R. Thampuran, S.H. Teoh, Corros. Sci. 40, 547–556 (1998)Google Scholar
  70. 70.
    J. Fojt, L. Joska, J. Málek, Corros. Sci. 71, 78–83 (2013)Google Scholar
  71. 71.
    B. Burnat, M. Walkowiak-Przybyło, T. Błaszczyk, L. Klimek, Acta Bioeng. Biomech. 15, 87–95 (2013)Google Scholar
  72. 72.
    K. Cai, X. Sui, Y. Hu, L. Zhao, M. Lai, Z. Luo, P. Liu, W. Yang, Mater. Sci. Eng., C 31, 1800–1808 (2011)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Facultad de Ingeniería CivilUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Departamento de Ingeniería de Proyectos, CUCEIUniversidad de GuadalajaraZapopanMexico
  3. 3.División de Estudios de Posgrado e InvestigaciónTecNM/Instituto Tecnológico de MoreliaMoreliaMexico
  4. 4.INICITUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  5. 5.SIMaP-GPM2, CNRSUniversité Grenoble AlpesGrenobleFrance

Personalised recommendations