Advertisement

Variation in Crystallographic Orientation and Twinning Activation with Size of Individual Grains in Rolled Magnesium Alloy

  • Ye Jin Kim
  • Jong Un Lee
  • Sang-Hoon Kim
  • Jonghun Yoon
  • Young Min Kim
  • Sung Hyuk ParkEmail author
Article
  • 49 Downloads

Abstract

This study demonstrates that the size of an individual grain in a rolled AZ31 alloy is significantly related to the crystallographic orientation of the grain and the area fraction of the {10–12} twinned region formed in the grain after compression along the rolling direction. With an increase in the size of an individual grain from 11 μm to 80 μm, the angle between the c-axis of the grain and the normal direction of rolling plane decreases from 38° to 5.5° and the Schmid factor for {10–12} twinning of the grain increases from 0.29 to 0.5. As a result, the area fraction of the twinned region formed in the grain increases from 30% to 100% owing to the combined effect of an increase in the Schmid factor value and a decrease in the stress required for activation of twinning by the increased grain size. The grain size (GS), Schmid factor for {10–12} twinning (SFtwin), and twin fraction (TF) have the relation TF/SFtwin = 109.8 + 1.45GS.

Graphic Abstract

Keywords

Magnesium Twinning Grain size Crystallographic orientation Schmid factor 

Notes

Acknowledgements

This research was supported by Kyungpook National University Research Fund, 2016.

References

  1. 1.
    S.G. Hong, S.H. Park, C.S. Lee, Acta Mater. 58, 5873 (2010)CrossRefGoogle Scholar
  2. 2.
    H.E. Kadiri, J. Kapil, A.L. Oppedal, L.G. Hector Jr., S.R. Agnew, M. Cherkaoui, S.C. Vogel, Acta Mater. 61, 3549 (2013)CrossRefGoogle Scholar
  3. 3.
    J.J. Jonas, S. Mu, T.A. Samman, G. Gottstein, L. Jiang, Ė. Martin, Acta Mater. 59, 2046 (2011)CrossRefGoogle Scholar
  4. 4.
    J.A. del Valle, M.T. Perez-Prado, O.A. Ruano, Mater. Sci. Eng. A 355, 68 (2003)CrossRefGoogle Scholar
  5. 5.
    S.H. Park, S.G. Hong, C.S. Lee, Mater. Sci. Eng. A 570, 149 (2013)CrossRefGoogle Scholar
  6. 6.
    B. Song, R. Xin, G. Chen, X. Zhang, Q. Liu, Scr. Mater. 66, 1061 (2012)CrossRefGoogle Scholar
  7. 7.
    B. Song, N. Guo, T. Liu, Q.S. Yang, Mater. Des. 62, 352 (2014)CrossRefGoogle Scholar
  8. 8.
    L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet, Mater. Sci. Eng. A 445–446, 302 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, S.R. Kalidindi, Acta Mater. 58, 6230 (2010)CrossRefGoogle Scholar
  10. 10.
    K. Atik, M. Efe, Mater. Sci. Eng. A 725, 267 (2018)CrossRefGoogle Scholar
  11. 11.
    Q. Dai, W. Lan, X. Chen, J. Eng. Mater. Tech. 136, 011005-1 (2014)Google Scholar
  12. 12.
    J.U. Lee, S.H. Kim, Y.J. Kim, S.H. Park, J. Alloys Compd. 787, 519 (2019)CrossRefGoogle Scholar
  13. 13.
    S.H. Park, S.G. Hong, C.S. Lee, Mater. Sci. Eng. A 578, 271 (2013)CrossRefGoogle Scholar
  14. 14.
    S.G. Hong, S.H. Park, C.S. Lee, J. Mater. Res. 25, 784 (2010)CrossRefGoogle Scholar
  15. 15.
    S.H. Park, Mater. Sci. Eng. A 680, 214 (2017)CrossRefGoogle Scholar
  16. 16.
    H. Watanabe, Y. Sasakura, N. Lkeo, T. Mukai, J. Alloys Compd. 626, 60 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Cui, J. Li, Y. Li, Y. Koizumi, A. Chiba, Mater. Sci. Eng. A 708, 104 (2017)CrossRefGoogle Scholar
  18. 18.
    R.E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, 3rd edn. (PWSKent, Boston, 1994)Google Scholar
  19. 19.
    J. Bohlen, P. Dobroň, J. Swiostek, D. Letzig, F. Chmelík, P. Lukáč, K.U. Kainer, Mater. Sci. Eng. A 462, 302 (2007)CrossRefGoogle Scholar
  20. 20.
    J. Bohlen, P. Dobron, E.M. Garcia, F. Chmelík, P. Lukáč, D. Letzig, K.U. Kainer, Adv. Eng. Mater. 8, 422 (2006)CrossRefGoogle Scholar
  21. 21.
    M.R. Barnett, Scr. Mater. 59, 696 (2008)CrossRefGoogle Scholar
  22. 22.
    R. Gehrmann, M.M. Frommert, G. Gottstein, Mater. Sci. Eng. A 395, 338 (2005)CrossRefGoogle Scholar
  23. 23.
    C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, M.T. Pérez-Prado, Acta Mater. 84, 443 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Ghaderi, M.R. Barnett, Acta Mater. 59, 7824 (2011)CrossRefGoogle Scholar
  25. 25.
    T. Al-Samman, X. Li, Mater. Sci. Eng. A 528, 3809 (2011)CrossRefGoogle Scholar
  26. 26.
    B.Q. Shi, R.S. Chen, W. Ke, Mater. Sci. Eng. A 546, 323 (2012)CrossRefGoogle Scholar
  27. 27.
    W.J. Kim, H.G. Jeong, H.T. Jeong, Scr. Mater. 61, 1040 (2009)CrossRefGoogle Scholar
  28. 28.
    J.A. del Valle, F. Carreño, O.A. Ruano, Acta Mater. 54, 4247 (2006)CrossRefGoogle Scholar
  29. 29.
    R.B. Figueiredo, I.J. Beyerlein, A.P. Zhilyaev, T.G. Langdon, Mater. Sci. Eng. A 527, 1709 (2010)CrossRefGoogle Scholar
  30. 30.
    N. Stanford, M.R. Barnett, Mater. Sci. Eng. A 496, 399 (2008)CrossRefGoogle Scholar
  31. 31.
    S.H. Kim, J.G. Jung, B.S. You, S.H. Park, J. Alloys Compd. 695, 344 (2017)CrossRefGoogle Scholar
  32. 32.
    K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, D. Letzig, Scr. Mater. 63, 725 (2010)CrossRefGoogle Scholar
  33. 33.
    J. Bohlen, M.R. Nurnberg, J.W. Senn, D. Letzig, S.R. Agnew, Acta Mater. 55, 2101 (2007)CrossRefGoogle Scholar
  34. 34.
    J. Bohlen, S. Yi, D. Letzig, K.U. Kainer, Mater. Sci. Eng. A 527, 7092 (2010)CrossRefGoogle Scholar
  35. 35.
    A. Galiyev, R. Kaibyshev, T. Sakai, Mater. Sci. Forum 419–422, 509 (2003)CrossRefGoogle Scholar
  36. 36.
    C. Lou, X. Zhang, Y. Ren, Mater. Charact. 107, 249 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Ye Jin Kim
    • 1
  • Jong Un Lee
    • 1
  • Sang-Hoon Kim
    • 1
  • Jonghun Yoon
    • 2
  • Young Min Kim
    • 3
  • Sung Hyuk Park
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Department of Mechanical EngineeringHanyang UniversityAnsanRepublic of Korea
  3. 3.Materials Implementation DepartmentKorea Institute of Materials ScienceChangwonRepublic of Korea

Personalised recommendations