Advertisement

Physics-Based Constitutive Model of Porous Materials for Die/Isostatic Compaction of Metallic Powders

  • Yujin Seong
  • Dami Yim
  • Min Ji Jang
  • Jeong Min Park
  • Seong Jin Park
  • Hyoung Seop KimEmail author
Article
  • 30 Downloads

Abstract

A physics-based constitutive model of porous materials is proposed to enhance the accuracy of numerical analysis in die/isostatic compaction. The correlation between the yield function and equivalent work equation was derived, and the numerical integration method was modified with the correlation. It is found that the apparent work of porous materials is lower than the product of relative density and equivalent work of solid materials at the beginning of compaction, implying the kinematic motion of powders and the resultant particle rearrangement. For verification of the proposed model, finite element analyses were performed for the die/isostatic compaction of three metal powders: Ti, SUS316L, and Al6061 powders. Compared with two conventional constitutive models, the proposed model improves the accuracy of the densification behaviors in all the stage during die/isostatic compaction. Furthermore, this study is a groundwork to link the densification behavior of porous materials at bulk scale to the particulate behavior of powders at microscale.

Graphic Abstract

Keywords

Constitutive model Powder metallurgy Die compaction Porous material Finite element method 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2017R1A2A1A17069427).

References

  1. 1.
    B.D. Soane, P.S. Blackwell, J.W. Dickson, D.J. Painter, Soil Tillage Res. 1, 373 (1980/1981)Google Scholar
  2. 2.
    T. Saito, JOM 56, 33 (2004)CrossRefGoogle Scholar
  3. 3.
    J.R. Pickens, J. Mater. Sci. 16, 1437 (1981)CrossRefGoogle Scholar
  4. 4.
    C.L. Martin, D. Bouvard, G. Delette, J. Am. Ceram. Soc. 89, 3379 (2006)CrossRefGoogle Scholar
  5. 5.
    P. Pizette, C.L. Martin, G. Delette, P. Sornay, F. Sans, Powder Technol. 198, 240 (2010)CrossRefGoogle Scholar
  6. 6.
    B. Harthong, J.-F. Jerier, P. Doremus, D. Imbault, F.-V. Donze, Int. J. Solids Struct. 46, 3357 (2009)CrossRefGoogle Scholar
  7. 7.
    B. Harthong, J.-F. Jerier, V. Richefeu, B. Chareyre, P. Doremus, D. Imbault, F.-V. Donze, Int. J. Mech. Sci. 61, 32 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Salvadori, S. Lee, A. Gillman, K. Matous, C. Shuck, A. Mukasyan, M.T. Beason, I.E. Gunduz, S.F. Son, Mech. Mater. 112, 56 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Huang, J. Li, Y. Teng, X. Dong, X. Wang, G. Kong, T. Song, Powder Technol. 320, 668 (2017)CrossRefGoogle Scholar
  10. 10.
    L. Kempton, D. Pinson, S. Chew, P. Zulli, A. Yu, Powder Technol. 320, 586 (2017)CrossRefGoogle Scholar
  11. 11.
    H.A. Kuhn, C.L. Downey, Int. J. Powder Metall. 7(1), 15 (1971)Google Scholar
  12. 12.
    S. Shima, M. Oyane, Int. J. Mech. Sci. 18, 285 (1976)CrossRefGoogle Scholar
  13. 13.
    S.M. Doraivelu, H.L. Gegel, J.S. Gunasekera, J.C. Malas, J.T. Morgan, J.F. Thomas, Int. J. Mech. Sci. 26(9/10), 527 (1984)CrossRefGoogle Scholar
  14. 14.
    D.N. Lee, H.S. Kim, Powder Metall. 35, 275 (1992)CrossRefGoogle Scholar
  15. 15.
    H.S. Kim, Meter. Sci. Eng. A 251, 100 (1998)CrossRefGoogle Scholar
  16. 16.
    D.C. Drucker, W. Prager, Q. Appl. Math. 10, 157 (1952)CrossRefGoogle Scholar
  17. 17.
    J. Almanstotter, Int. J. Refract. Met. Hard Mater. 50, 290 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Zhou, S. Huang, J. Hu, Y. Lei, Y. Xiao, B. Li, S. Yan, F. Zou, Powder Technol. 305, 183 (2017)CrossRefGoogle Scholar
  19. 19.
    A.C.F. Cocks, I.C. Sinka, Mech. Mater. 39, 392 (2007)CrossRefGoogle Scholar
  20. 20.
    I.C. Sinka, A.C.F. Cocks, Mech. Mater. 39, 404 (2007)CrossRefGoogle Scholar
  21. 21.
    H. Diarra, V. Mazel, V. Busignies, P. Tchoreloff, Powder Technol. 320, 530 (2017)CrossRefGoogle Scholar
  22. 22.
    N.A. Fleck, J. Mech. Phys. Solids 43, 1409 (1995)CrossRefGoogle Scholar
  23. 23.
    A.R. Akisanya, A.C.F. Cocks, N.A. Fleck, Int. J. Mech. Sci. 39, 1315 (1997)CrossRefGoogle Scholar
  24. 24.
    I. Sridhar, N.A. Fleck, Acta Mater. 48, 3341 (2000)CrossRefGoogle Scholar
  25. 25.
    N. Aravas, Int. J. Numer. Methods Eng. 24, 1395 (1987)CrossRefGoogle Scholar
  26. 26.
    H.S. Kim, Y. Estrin, E.Y. Gutmanas, C.K. Rhee, Mater. Sci. Eng. A 307, 67 (2001)CrossRefGoogle Scholar
  27. 27.
    I.F. Martynova, M.S. Shtern, Soviet Powder Metall. Met. Ceram. 17, 17 (1978)CrossRefGoogle Scholar
  28. 28.
    G.M. Zhdanovich, Theory of Compacting of Metal Powders (Foreign Technology Division Wright-Patterson Air Force Base, Dayton, 1971)Google Scholar
  29. 29.
    H.A. Kuhn, in Powder Metallurgy Processing: The Techniques and Analyses, ed. by H.A. Kuhn, A. Lawley (Acadamic Press, New York, 1978), p. 99Google Scholar
  30. 30.
    M.S. Koval’chenko, Powder Metall. Metal Ceram. 32(3), 268 (1993)CrossRefGoogle Scholar
  31. 31.
    Z.L. Zhang, Comput. Methods Appl. Mech. Eng. 121, 29 (1995)CrossRefGoogle Scholar
  32. 32.
    Z.L. Zhang, Comput. Methods Appl. Mech. Eng. 121, 15 (1995)CrossRefGoogle Scholar
  33. 33.
    S.B. Biner, W.A. Spitzig, Acta Metall. Mater. 38(4), 603 (1990)CrossRefGoogle Scholar
  34. 34.
    Y.S. Kwon, H.T. Lee, K.T. Kim, J. Eng. Mater. Technol. 119, 366 (1997)CrossRefGoogle Scholar
  35. 35.
    S.C. Lee, K.T. Kim, Int. J. Mech. Sci. 44, 1295 (2002)CrossRefGoogle Scholar
  36. 36.
    H. Mecking, U.F. Kocks, Acta Matall. 29, 1865 (1981)CrossRefGoogle Scholar
  37. 37.
    Y. Estrin, in Unified Constitutive Laws of Plastic Deformation, ed. by A.S. Krausz, K. Krausz (Academic Press, San Diego, 1996), p. 69CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Yujin Seong
    • 1
  • Dami Yim
    • 1
  • Min Ji Jang
    • 1
  • Jeong Min Park
    • 1
  • Seong Jin Park
    • 2
  • Hyoung Seop Kim
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangRepublic of Korea
  2. 2.Department of Mechanical EngineeringPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations