Advertisement

Processing of Al/Al2O3 Composite Using Simple Shear Extrusion (SSE) Manufactured by Powder Metallurgy (PM)

  • Majed Zabihi
  • Esmaeil EmadoddinEmail author
  • Fathallah Qods
Article
  • 21 Downloads

Abstract

In this present study, Aluminum with 1, 3, 5 and 7 vol% alumina composites were produced via powder metallurgy and vacuum sintering techniques, then were followed by simple shear extrusion (SSE) process. Four SSE dies with different distortion angles (α) were used in experimental works. The SSE-ed samples with α = 22.5° and 30° were failed whereas the SSE-ed samples with α = 8° and 10° were deformed up to three passes, successfully. Porosity measurements were carried out by Archimedes method and microstructure evaluation of the specimens was accomplished using optical and scanning electron microscopy. Mechanical behavior of processed samples was investigated by shear punch test, and hardness measurements. It was understood that the SSE-ed samples have good bonding at aluminum/alumina interface. It was found that by increasing the number of SSE passes, ultimate shear strength and hardness were increased. The percentage of shear elongation and porosity content were decreased. Moreover, when the amount of α was increased, the shear strength for all samples was improved.

Graphical Abstract

Keywords

Powder metallurgy Simple shear extrusion Shear punch test Porosity content Al/Al2O3 composite 

Notes

Acknowledgements

M. Zabihi wish to express his gratitude to the Semnan University, VASEGH FORGE Co and Tarash Sanie; for permitting them to utilize die making shops facilities for the present work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    R. Jamaati, M.R. Toroghinejad, J. Mater. Eng. Perform. 21, 859 (2012)CrossRefGoogle Scholar
  2. 2.
    Y. Ma, X. Yang, C. He, K. Yang, J. Xu, J. Sha, C. Shi, J. Li, N. Zhao, Mater. Lett. 223, 351 (2018)CrossRefGoogle Scholar
  3. 3.
    A. Ibrahim, D.P. Bishop, G.J. Kipouros, Powder Technol. 279, 106 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Zabihi, M.R. Toroghinejad, A. Shafyei, Mater. Sci. Eng. A 560, 567 (2013)CrossRefGoogle Scholar
  5. 5.
    K. Edalati, M. Ashida, Z. Horita, T. Matsui, H. Kato, Wear 310, 83 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Baradeswaran, A.E. Perumal, Compos. Part B Eng. 56, 464 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Pournaderi, S. Mahdavi, F. Akhlaghi, Powder Technol. 229, 276 (2012)CrossRefGoogle Scholar
  8. 8.
    B.C. Kandpal, J. Kumar, H. Singh, Mater. Today Proc. 4, 2783 (2017)CrossRefGoogle Scholar
  9. 9.
    R.B. Figueiredo, M. Kawasaki, T.G. Langdon, Rev. Adv. Mater. Sci. 19, 1 (2009)Google Scholar
  10. 10.
    P. Kumar, M. Kawasaki, T. Langdon, J. Mater. Sci. 51, 7 (2016)CrossRefGoogle Scholar
  11. 11.
    H.R. Derakhshandeh, A.J. Jahromi, Mater. Des. 32, 3377 (2011)CrossRefGoogle Scholar
  12. 12.
    R. Jamaati, M.R. Toroghinejad, Mater. Sci. Eng. A 527, 4146 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Huang, P. Bazarnik, D. Wan, D. Luo, P.H.R. Pereira, M. Lewandowska, J. Yao, B.E. Hayden, T.G. Langdon, Acta Mater. 164, 499 (2019)CrossRefGoogle Scholar
  14. 14.
    S.M. Zebarjad, S.A. Sajjadi, Mater. Des. 27, 684 (2006)CrossRefGoogle Scholar
  15. 15.
    N. Pardis, C. Chen, M. Shahbaz, R. Ebrahimi, L.S. Toth, Mater. Sci. Eng. A 613, 357 (2014)CrossRefGoogle Scholar
  16. 16.
    N. Pardis, R. Ebrahimi, Mater. Sci. Eng. A 527, 355 (2009)CrossRefGoogle Scholar
  17. 17.
    N. BayatTork, N. Pardis, R. Ebrahimi, Mater. Sci. Eng. A 560, 34 (2013)CrossRefGoogle Scholar
  18. 18.
    E. Bagherpour, F. Qods, R. Ebrahimi, H. Miyamoto, Mater. Sci. Eng. A 674, 221 (2016)CrossRefGoogle Scholar
  19. 19.
    N. Pardis, R. Ebrahimi, Mater. Sci. Eng. A 527, 6153 (2010)CrossRefGoogle Scholar
  20. 20.
    J.G. Kim, M. Latypov, N. Pardis, Y.E. Beygelzimer, H.S. Kim, Mater. Des. 83, 858 (2015)CrossRefGoogle Scholar
  21. 21.
    E. Bagherpour, M. Reihanian, R. Ebrahimi, Mater. Des. 40, 262 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Zabihi, M.R. Toroghinejad, A. Shafyei, Mater. Sci. Eng. A 667, 383 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Zabihi, M.R. Toroghinejad, A. Shafyei, Mater. Sci. Eng. A 618, 490 (2014)CrossRefGoogle Scholar
  24. 24.
    L. Qian, M. Paredes, T. Wierzbicki, Y. Sparrer, M. Feuerstein, P. Zeng, G. Fang, Int. J. Mech. Sci. 118, 205 (2016)CrossRefGoogle Scholar
  25. 25.
    H.R. Abedi, A. Zarei-Hanzaki, M. Bagherzadeh-Biucki, M. Emamy, Mater. Sci. Eng. A 606, 360 (2014)CrossRefGoogle Scholar
  26. 26.
    H. ShahHosseini, M. Alishahi, M. Shamanian, Mater. Lett. 67, 259 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Parvizi, V. Hasannaeimi, E. Saebnoori, T. Shahrabi, S.K. Sadrnezhaad, Russ. J. NonFerr. Met. 53, 169 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Pal, K.K. Ray, R. Mitra, Mater. Sci. Eng. A 527, 6831 (2010)CrossRefGoogle Scholar
  29. 29.
    R.K. Guduru, K.A. Darling, R. Kishore, R.O. Scattergood, C.C. Koch, K.L. Murty, Mater. Sci. Eng. A 395, 307 (2005)CrossRefGoogle Scholar
  30. 30.
    ASTM E-10-10, Standard Test Method for Brinell Hardness of Metallic Materials (ASTM International, West Conshohocken, PA, 2010), https://www.astm.org/
  31. 31.
    S. Amirkhanlou, R. Jamaati, B. Niroumand, M.R. Toroghinejad, Mater. Sci. Eng. A 528, 4462 (2011)CrossRefGoogle Scholar
  32. 32.
    S. Amirkhanlou, B. Niroumand, Mater. Des. 32, 1895 (2011)CrossRefGoogle Scholar
  33. 33.
    A. Hassani, E. Bagherpour, F. Qods, J. Alloys Compd. 591, 132 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Canakci, T. Varol, S. Ozsahin, Met. Mater. Int. 19, 519 (2013)CrossRefGoogle Scholar
  35. 35.
    F.V. Lenel, Powder Metallurgy: Principles and Applications, 1st edn. (Metal Powder Industries Federation, Princeton, 1980), p. 128Google Scholar
  36. 36.
    R.M. Wang, M.K. Surappa, C.H. Tao, C.Z. Li, M.G. Yan, Mater. Sci. Eng. A 254, 219 (1998)CrossRefGoogle Scholar
  37. 37.
    R.J. Arsenault, Composites 25, 540 (1994)CrossRefGoogle Scholar
  38. 38.
    S.J. Barnes, P.B. Prangnell, S.M. Roberts, P.J. Withers, Scr. Met. Mater 33, 323 (1995)CrossRefGoogle Scholar
  39. 39.
    R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, B. Niroumand, Mater. Sci. Eng. A 528, 2143 (2011)CrossRefGoogle Scholar
  40. 40.
    R.J. Arsenault, N. Shi, Mater. Sci. Eng. A 81, 175 (1986)CrossRefGoogle Scholar
  41. 41.
    E. Bagherpour, F. Qods, R. Ebrahimi, H. Miyamoto, Mater. Sci. Eng. A 666, 324 (2016)CrossRefGoogle Scholar
  42. 42.
    R. Narayanasamy, T. Ramesh, M. Prabhakar, Mater. Sci. Eng. A 504, 13 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Rezayat, A. Akbarzadeh, Met. Mater. Int. 18, 827 (2012)CrossRefGoogle Scholar
  44. 44.
    R. Jamaati, M.R. Toroghinejad, A. Najafizadeh, Mater. Sci. Eng. A 527, 3857 (2010)CrossRefGoogle Scholar
  45. 45.
    J.H. Kim, J.G. Jung, E.J. Baek, Y.S. Choi, K. Euh, Met. Mater. Int. 25, 353 (2019)CrossRefGoogle Scholar
  46. 46.
    A.R. Geranmayeh, R. Mahmudi, M. Kangooie, Mater. Sci. Eng. A 528, 3967 (2011)CrossRefGoogle Scholar
  47. 47.
    C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Acta Mater. 55, 5115 (2007)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Majed Zabihi
    • 1
  • Esmaeil Emadoddin
    • 1
    Email author
  • Fathallah Qods
    • 1
  1. 1.Faculty of Materials and Metallurgical EngineeringSemnan UniversitySemnanIran

Personalised recommendations