Metals and Materials International

, Volume 25, Issue 5, pp 1235–1245 | Cite as

Correlation Between Primary Si and Silicide Refinement Induced by Ultrasonic Treatment of Multicomponent Al–Si Alloy Containing Ti, Zr, V, and P

  • Jae-Gil Jung
  • Young-Hee Cho
  • Tae-Young Ahn
  • Jae-Hee Yoon
  • Sang-Hwa Lee
  • Jung-Moo LeeEmail author


The correlation between primary Si and silicide refinement induced by ultrasonic treatment (UST) of multicomponent Al–Si alloy containing Ti, Zr, V, and P was investigated. UST significantly refined the primary Si phase owing to cavitation-induced wetting and deagglomeration of MgAl2O4 particles. Lowering the UST finish temperature caused deterioration of the degree of primary Si refinement, instead leading to silicide refinement. Cavitation-induced silicide nucleation on wetted MgAl2O4 consumed the MgAl2O4 particles, particularly in the case of primary Si nucleation. Similarly, the formation of an AlP phase on the silicide phase reduced the nucleation efficiency of the AlP phase. Poisoning of the MgAl2O4 and AlP phases by the silicide phase was responsible for the deterioration in primary Si refinement. Room-temperature tensile strength and high-temperature elongation were increased by UST and were dependent on the size of primary Si.


Aluminum alloy Ultrasonics Solidification Nucleation Mechanical properties 



This work was supported by the WC300 R&D program (S2317902) funded by the Ministry of SMEs and Startups.


  1. 1.
    L. Lasa, J.M. Rodriguez-Ibabe, Effect of composition and processing route on the wear behaviour of Al–Si alloys. Scr. Mater. 46, 477–481 (2002)CrossRefGoogle Scholar
  2. 2.
    N. Belov, D. Eskin, N. Avxentieva, Constituent phase diagrams of the Al–Cu–Fe–Mg–Ni–Si system and their application to the analysis of aluminum piston alloys. Acta Mater. 53, 4709–4722 (2005)CrossRefGoogle Scholar
  3. 3.
    J.-G. Jung, J.-M. Lee, Y.-H. Cho, W.-H. Yoon, Combined effects of ultrasonic melt treatment, Si addition and solution treatment on the microstructure and tensile properties of multicomponent Al–Si alloys. J. Alloys Compd. 693, 201–210 (2017)CrossRefGoogle Scholar
  4. 4.
    C. Lin, S. Wu, S. Lü, P. An, L. Wan, Effects of ultrasonic vibration and manganese on microstructure and mechanical properties of hypereutectic Al–Si alloys with 2%Fe. Intermetallics 32, 176–183 (2013)CrossRefGoogle Scholar
  5. 5.
    J.-G. Jung, S.-H. Lee, Y.-H. Cho, W.-H. Yoon, T.-Y. Ahn, Y.-S. Ahn, J.-M. Lee, Effect of transition elements on the microstructure and tensile properties of Al–12Si alloy cast under ultrasonic melt treatment. J. Alloys Compd. 712, 277–287 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Sha, S. Wu, L. Wan, Combined effects of cobalt addition and ultrasonic vibration on microstructure and mechanical properties of hypereutectic Al–Si alloys with 0.7%Fe. Mater. Sci. Eng. A 554, 142–148 (2012)CrossRefGoogle Scholar
  7. 7.
    Y. Yang, K. Yu, Y. Li, D. Zhao, X. Liu, Evolution of nickel-rich phases in Al–Si–Cu–Ni–Mg piston alloys with different Cu additions. Mater. Des. 33, 220–225 (2012)CrossRefGoogle Scholar
  8. 8.
    Y. Li, Y. Yang, Y. Wu, Z. Wei, X. Liu, Supportive strengthening role of Cr-rich phase on Al-Si multicomponent piston alloy at elevated temperature. Mater. Sci. Eng., A 528, 4427–4430 (2011)CrossRefGoogle Scholar
  9. 9.
    L. Han, Y. Sui, Q. Wang, K. Wang, Y. Jiang, Effects of Nd on microstructure and mechanical properties of cast Al–Si–Cu–Ni–Mg piston alloys. J. Alloys Compd. 695, 1566–1572 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Gao, X. Zhu, Q. Sun, X. Liu, Morphological evolution of ZrAlSi phase and its impact on the elevated-temperature properties of Al–Si piston alloy. J. Alloys Compd. 567, 82–88 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Hernandez-Sandoval, G.H. Garzr-Elizondo, A.M. Samuel, S. Valtiierra, F.H. Samuel, The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions. Mater. Des. 58, 89–101 (2014)CrossRefGoogle Scholar
  12. 12.
    W. Kasprzak, B.S. Amirkhiz, M. Niewczas, Structure and properties of cast Al–Si based alloy with Zr–V–Ti additions and its evaluation of high temperature performance. J. Alloys Compd. 595, 67–79 (2014)CrossRefGoogle Scholar
  13. 13.
    G.I. Eskin, D.G. Eskin, Ultrasonic treatment of light alloy melts, 2nd edn. (CRC Press, Boca Raton, 2014)CrossRefGoogle Scholar
  14. 14.
    F. Wang, D. Eskin, J. Mi, T. Connolley, J. Lindsay, M. Mounib, A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state. Acta Mater. 116, 354–363 (2016)CrossRefGoogle Scholar
  15. 15.
    B. Wang, D. Tan, T.L. Lee, J.C. Khong, F. Wang, D. Eskin, T. Connolley, K. Fezzaa, J. Mi, Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound. Acta Mater. 144, 505–515 (2018)CrossRefGoogle Scholar
  16. 16.
    S.-B. Kim, Y.-H. Cho, J.-G. Jung, W.-H. Yoon, Y.-K. Lee, J.-M. Lee, Microstructure-strengthening interrelationship of an ultrasonically treated hypereutectic Al–Si (A390) alloy. Metals Mater. Int. 24, 1376–1385 (2018)CrossRefGoogle Scholar
  17. 17.
    J.-G. Jung, T.-Y. Ahn, Y.-H. Cho, S.-H. Kim, J.-M. Lee, Synergistic effect of ultrasonic melt treatment and fast cooling on the refinement of primary Si in a hypereutectic Al–Si alloy. Acta Mater. 144, 31–40 (2018)CrossRefGoogle Scholar
  18. 18.
    ASTM E8/E8 M–13a, Standard test methods for tension testing of metallic materials, ASTM International, PA, 2013Google Scholar
  19. 19.
    ASTM E21–09, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM International, PA, 2009Google Scholar
  20. 20. (accessed 31 Oct., 2018)
  21. 21. (accessed 31 Oct., 2018)
  22. 22.
    Calculated from ICSD using POWD-12 ++ (1997)Google Scholar
  23. 23.
    W. Wong-Ng, H.F. McMurdie, B. Paretzkin, Y. Zhang, Standard X-ray diffraction powder patterns of sixteen ceramic phases. Powder Diffr. 2, 191–202 (1987)CrossRefGoogle Scholar
  24. 24.
    M.C. Morris, H.F. McMurdie, E.H. Evans, B. Paretzkin, J.H. de Groot, C.R. Hubbard, S.J. Carmel, Standard X-ray diffraction powder patterns. Natl. Bur. Stand. Monogr. 25, 35 (1976)Google Scholar
  25. 25.
    H.-T. Li, Y. Wang, Z. Fan, Mechanisms of enhanced heterogeneous nucleation during solidification in binary Al–Mg alloys. Acta Mater. 60, 1537–1582 (2012)Google Scholar
  26. 26.
    G. Wang, M.S. Dargusch, D.G. Eskin, D.H. StJohn, Identifying the stages during ultrasonic processing that reduce the grain size of aluminum with added Al3Ti1B master alloy. Adv. Eng. Mater. 19, 1700264 (2017)CrossRefGoogle Scholar
  27. 27.
    G. Wang, M.S. Dargusch, M. Qian, D.G. Eskin, D.H. StJohn, The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al–2Cu alloy. J. Cryst. Growth 408, 119–124 (2014)CrossRefGoogle Scholar
  28. 28.
    E.E. Havinga, H. Damsma, P. Hokkeling, Compounds and pseudo-binary alloys with the CuAl2(C16)-type structure I. Preparation and X-ray results. J. Less-Common Met. 27, 169–186 (1972)CrossRefGoogle Scholar
  29. 29.
    J.-G. Jung, S.-H. Lee, J.-M. Lee, Y.-H. Cho, S.-H. Kim, W.-H. Yoon, Improved mechanical properties of near-eutectic Al–Si piston alloy through ultrasonic melt treatment. Mater. Sci. Eng., A 669, 187–195 (2016)CrossRefGoogle Scholar
  30. 30.
    G. Zhang, J. Zhang, B. Li, W. Cai, Double-stage hardening behavior and fracture characteristics of a heavily alloyed Al–Si piston alloy during low-cycle fatigue loading. Mater. Sci. Eng., A 561, 26–33 (2013)CrossRefGoogle Scholar
  31. 31.
    Z. Asghar, G. Requena, E. Boller, Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys. Acta Mater. 59, 6420–6432 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Jae-Gil Jung
    • 1
  • Young-Hee Cho
    • 1
  • Tae-Young Ahn
    • 2
  • Jae-Hee Yoon
    • 1
  • Sang-Hwa Lee
    • 1
  • Jung-Moo Lee
    • 1
    Email author
  1. 1.Metallic Materials DivisionKorea Institute of Materials ScienceChangwonRepublic of Korea
  2. 2.Nuclear Materials Safety Research DivisionKorea Atomic Energy Research InstituteDaejeonRepublic of Korea

Personalised recommendations