Advertisement

Metals and Materials International

, Volume 25, Issue 6, pp 1586–1592 | Cite as

Solidification Structure and Segregation of High Magnetic Induction Grain-Oriented Silicon Steel

  • Xin Li
  • Min Wang
  • YanPing BaoEmail author
  • Jian Gong
  • Xianhui Wang
  • Pang Weiguang
Article
  • 119 Downloads

Abstract

The solidification structure and centerline segregation of high magnetic induction grain-oriented silicon steel slabs were studied to describe the characteristics of solidification and compare the degree of centerline segregation of continuously cast slabs. Industrial experiments were conducted to investigate the solidification behavior of slabs by secondary cooling segment electromagnetic stirring. Three typical slabs were produced by S-EMS with current intensities of 0, 200, and 350 A. Molten steel cast at a low stirring intensity (0 A) resulted in a coarse structure relative to those cast at higher stirring intensities (200 and 350 A). The centerline segregation of carbon and silicon markedly increased with increases in S-EMS current intensity. Composition distribution by electron probe microanalysis identified segregation spots as the sources of centerline segregation. Experimental results indicate that to optimize the centerline segregation of grain-oriented silicon steel slabs, the columnar crystal zone should be enlarged and the equiaxed crystal zone be reduced.

Keywords

High magnetic induction grain-oriented silicon steel S-EMS Solidification structure Segregation 

Notes

Acknowledgements

The authors are grateful for support from the National Science Foundation China (Grant No. 51774031), Open project of state key laboratory of advanced special steel, shanghai university (SKLASS 2017-12), China, and Shougang Qian′an Iron and Steel Company.

References

  1. 1.
    M.F. Littman, J. Magn. Magn. Mater. 26, 1 (1982)CrossRefGoogle Scholar
  2. 2.
    Z. Xia, Y. Kang, Q. Wang, J. Magn. Magn. Mater. 23, 3229 (2008)CrossRefGoogle Scholar
  3. 3.
    M.Q. Yan, H. Qian, P. Yan, H.J. Song, Y.Y. Shao, W.M. Mao, Acta Metall. Sin. 48, 16 (2012)CrossRefGoogle Scholar
  4. 4.
    K. Price, B. Goode, D. Power, Ironmak Steelmak. 43, 636 (2016)CrossRefGoogle Scholar
  5. 5.
    G.L. Houze, S.L. Ames, W.R. Bitler, IEEE Trans. Magn. 6, 708 (1970)CrossRefGoogle Scholar
  6. 6.
    Z. Liu, Z. Liu, J. Li, Z. He, Acta Metall. Sin. 5, 33 (1992)Google Scholar
  7. 7.
    H.Y. Song, H.T. Liu, H.H. Lu, H.Z. Li, W.Q. Liu, X.M. Zhang, G.D. Wang, Mater. Sci. Eng. A-Struct. 605, 260 (2014)CrossRefGoogle Scholar
  8. 8.
    S.M. Shin, S. Birosca, S.K. Chang, B.C. De Cooman, J. Microsc. 230, 414 (2010)CrossRefGoogle Scholar
  9. 9.
    K. GüNTHER, G. Abbruzzese, S. Fortunati, G. Ligi, Steel Res. Int. 76, 413 (2005)CrossRefGoogle Scholar
  10. 10.
    N. Zhang, P. Yang, W.M. Mao, Acta Metall. Sin. 48, 307 (2012)CrossRefGoogle Scholar
  11. 11.
    L. Cheng, N. Zhang, P. Yang, W.M. Mao, Scr. Mater. 67, 899 (2012)CrossRefGoogle Scholar
  12. 12.
    H.T. Liu, Z.Y. Liu, G.M. Cao, C.G. Li, G.D. Wang, J. Magn. Magn. Mater. 323, 2648 (2011)CrossRefGoogle Scholar
  13. 13.
    L. Ding, Y.Y. Shao, P. Yang, W.M. Mao, T. Mater. Heat Treat. 34, 111 (2013)Google Scholar
  14. 14.
    Z. He, Y. Zhao, H. Luo, Electrical Steel (Metallurgical Industry press, Beijing, 2012), pp. 397–400Google Scholar
  15. 15.
    M. Réger, B. Verő, Z. Csepeli, Á. Szélig, Mater. Sci. Forum 508, 233 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Ghosh, Sadhana 26(1–2), 5 (2001)CrossRefGoogle Scholar
  17. 17.
    S.K. Choudhary, S. Ganguly, A. Sengupta, V. Sharma, J. Mater. Process. Tech. 243, 312 (2017)CrossRefGoogle Scholar
  18. 18.
    Z. Xu, X. Wang, F. Huang, L. Zhou, W. Wang, Y. Yin, J. Univ. Sci. Tech. Beijing. 36, 751 (2014)Google Scholar
  19. 19.
    P.P. Sahoo, A. Kumar, J. Halder, M. Raj, ISIJ Int. 49, 521 (2009)CrossRefGoogle Scholar
  20. 20.
    H.J. Wu, N. Wei, Y.P. Bao, G.X. Wang, C.P. Xiao, J.J. Liu, Int. J. Min. Met. Mater. 18, 159 (2011)CrossRefGoogle Scholar
  21. 21.
    Y. Ji, P. Lan, H. Geng, C.J. Shang, J.Q. Zhang, Steel Res. Int. 89, 1700331 (2017)CrossRefGoogle Scholar
  22. 22.
    L. Beitelman, Can. Metall. Quart. 38, 301 (1999)CrossRefGoogle Scholar
  23. 23.
    S.K. Choudhary, G. Suvankar, ISIJ Int. 47, 1759 (2007)CrossRefGoogle Scholar
  24. 24.
    G. Lesoult, Mater. Sci. Eng. A-Struct. 413, 19 (2005)CrossRefGoogle Scholar
  25. 25.
    Y.M. Won, B.G. Thomas, Metall. Mater. Trans. A 32, 1755 (2001)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Xin Li
    • 1
  • Min Wang
    • 1
  • YanPing Bao
    • 1
    Email author
  • Jian Gong
    • 2
  • Xianhui Wang
    • 2
  • Pang Weiguang
    • 2
  1. 1.State Key Lab of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Silicon Steel DepartmentShougang Qian′an Iron & Steel CompanyQian′anChina

Personalised recommendations