Metals and Materials International

, Volume 25, Issue 5, pp 1202–1208 | Cite as

In SR-GIXRD Study of Oxide Film Evaluation on AISI 304 Stainless Steel in High Temperature Water

  • Yan ZhaoEmail author
  • Jianjun Guan
  • Feng Liu
  • Ping Liang
  • Congqian Cheng
  • Jie Zhao


Oxide films on AISI 304 stainless steel in high temperature and high pressure water were detected by a new method that synchrotron radiation grazing incidence X-ray diffraction. The morphology, phase structure, thickness and electrochemical corrosion resistance of the oxide films were illustrated. A empirical equation for oxide growth is applied to evaluate the changes in film thickness. Observations suggest that small irregular granular (Fe, Cr)2O3 oxides and polyhedral block (Fe, Cr)3O4 oxides are grown on stainless steel surface. The fine inner (Fe, Cr)2O3 particles preferentially form, and the part is precipitated by the (Fe, Cr)3O4 structure for the diffusion outward, leading to the formation of external coarse grain oxides. The average size of (Fe, Cr)2O3 is slightly oscillated with the oxidation time, and that of (Fe, Cr)3O4 oxides increases with the increasing exposure time. The oxide film thickness is less than 500 nm for 24 h oxidation in high temperature water, and for 240 h oxidation the thickness is less than 800 nm. Polarization and EIS test results indicate that the oxide films of (Fe, Cr)2O3 and (Fe, Cr)3O4 provides corrosion resistance for stainless steel.


Stainless steel Oxide film Electrochemical impedance spectra SR-GIXRD 



This work was supported by Science and Technology Research Fund of Liaoning Provincial Department of Education (NO. L2017LQN026) and Scientific Research Cultivation Fund of Liaoning Shihua University (No. 2016PY-024).The authors wish to thank all the staff members of the 1W1A beam line of Beijing Synchrotron Radiation Facility.


  1. 1.
    Z.Y. Li, Z.B. Cai, W.J. Yang, X.Y. Shen, G.H. Xue, M.H. Zhu, Appl. Surf. Sci. 435, 312 (2018)CrossRefGoogle Scholar
  2. 2.
    J.J. Guan, Y. Zhao, F. Liu, J. Zhao, Met. Mater. Int. 21, 1006 (2015)CrossRefGoogle Scholar
  3. 3.
    X. Cheng, Z. Feng, C. Li, C. Dong, X. Li, Electrochim. Acta 56, 5860 (2011)CrossRefGoogle Scholar
  4. 4.
    C. Ma, E.H. Han, Q.J. Peng, K. Wei, Appl. Surf. Sci. 442, 423 (2018)CrossRefGoogle Scholar
  5. 5.
    S.S. Raiman, G.S. Was, J. Nucl. Mater. 493, 207 (2017)CrossRefGoogle Scholar
  6. 6.
    B. Stellwag, Corros. Sci. 40, 337 (1998)CrossRefGoogle Scholar
  7. 7.
    T. Miyazawa, T. Terachi, S. Uchida, J. Nucl. Sci. Tech. 43, 884 (2006)CrossRefGoogle Scholar
  8. 8.
    W. Kuang, X. Wu, E.H. Han, Corros. Sci. 63, 259 (2012)CrossRefGoogle Scholar
  9. 9.
    D.J. Kim, H.C. Kwon, H.P. Kim, Corros. Sci. 50, 1221 (2008)CrossRefGoogle Scholar
  10. 10.
    M.F. Montemor, M. Ferreira, M. Walls, Corrosion 59, 11 (2003)CrossRefGoogle Scholar
  11. 11.
    Z. Szklarska-Smiclowska, K.C. Chou, Z. Xia, Corros. Sci. 32, 609 (1991)CrossRefGoogle Scholar
  12. 12.
    W. Kuang, X. Wu, E.H. Han, Corros. Sci. 52, 4081 (2010)CrossRefGoogle Scholar
  13. 13.
    H. Inagaki, A. Nishikawa, Y. Suaita, J. Nucl. Sci. Tech. 40, 143 (2003)CrossRefGoogle Scholar
  14. 14.
    X. Liu, X. Wu, E.H. Han, Corros. Sci. 65, 136 (2012)CrossRefGoogle Scholar
  15. 15.
    W. Kuang, X. Wu, E.H. Han, Corros. Sci. 53, 1107 (2011)CrossRefGoogle Scholar
  16. 16.
    C. Ornek, M. Langberg, J. Evertsson, G. Harlow, W. Linpe, L. Rullik, F. Carla, R. Felici, E. Bettini, U. Kivisakk, E. Lundgren, J.S. Pan, Corros. Sci. 141, 18 (2018)CrossRefGoogle Scholar
  17. 17.
    R.D. Marco, Z.T. Jiang, J. Martizano, A. Lowe, B. Pejcic, A. Riessen, Electrochim. Acta 51, 5920 (2006)CrossRefGoogle Scholar
  18. 18.
    J. Zhu, T.M. Wang, F. Cao, W.X. Huang, H.W. Fu, Z.N. Chen, Mater. Lett. 89, 137 (2012)CrossRefGoogle Scholar
  19. 19.
    Y. Zhao, J.J. Guan, F. Liu, C.Q. Cheng, J. Zhao, High Temp. Mater. Proc. 37, 387 (2018)CrossRefGoogle Scholar
  20. 20.
    W. Kuang, E.H. Han, X. Wu, Corros. Sci. 52, 3654 (2010)CrossRefGoogle Scholar
  21. 21.
    S.E. Ziemniak, M. Hanson, P.C. Sander, Corros. Sci. 50, 2465 (2008)CrossRefGoogle Scholar
  22. 22.
    W. Kuang, X. Wu, E.H. Han, Corros. Sci. 53, 2582 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Ghosh, M.K. Kumar, V. Kwin, Appl. Surf. Sci. 264, 312 (2012)CrossRefGoogle Scholar
  24. 24.
    S.E. Ziemniak, M. Hanson, Corros. Sci. 44, 2209 (2002)CrossRefGoogle Scholar
  25. 25.
    G. Tranchida, M. Clesi, F. Di Quarto, M. Santamaria, Electrochim. Acta 273, 412 (2018)CrossRefGoogle Scholar
  26. 26.
    J.P. Veder, A. Nafady, G. Clarke, Electrochim. Acta 56, 1546 (2011)CrossRefGoogle Scholar
  27. 27.
    Z.L. Liu, J.F. Liu, P. Ren, J. Inorgan. Mater. 23, 928 (2008)CrossRefGoogle Scholar
  28. 28.
    K. Daub, X. Zhang, Z. Wang, J.J. Qin, J.J. Noel, J.C. Wren, Electrochim. Acta 56, 6661 (2011)CrossRefGoogle Scholar
  29. 29.
    J.M. Hu, J.T. Zhang, J.Q. Zhang, C.N. Cao, Corros. Sci. 47, 2607 (2005)CrossRefGoogle Scholar
  30. 30.
    Q.Y. Zhou, J.B. Jiang, Q.D. Zhong, Y. Wang, K. Li, H.J. Liu, J. Alloys Compd. 563, 171 (2013)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Yan Zhao
    • 1
    Email author
  • Jianjun Guan
    • 1
  • Feng Liu
    • 1
  • Ping Liang
    • 1
  • Congqian Cheng
    • 2
  • Jie Zhao
    • 2
  1. 1.School of Mechanical EngineeringLiaoning Shihua UniversityFushunChina
  2. 2.School of Materials Science and EngineeringDalian University of TechnologyDalianChina

Personalised recommendations