Metals and Materials International

, Volume 25, Issue 6, pp 1410–1419 | Cite as

Matrix-Diffusion-Controlled Coarsening of the γ′ Phase in Waspaloy

  • Haiping Wang
  • Dong LiuEmail author
  • Yongzhao Shi
  • Jianguo Wang
  • Yanhui Yang
  • Longxiang Wang
  • Weidong Qin


This paper discussed the coarsening behavior of the γ′ phase in Waspaloy during heat treatment at different aging times under the temperatures of 960 °C and 1000 °C. The morphology of γ′ phase is obtained by scanning electron microscopy and it is measured by the software Image Pro Plus 6.0 in a variety of aging conditions. The volume fraction of the γ′ phase is decreasing with the increase of the temperature. The radius of the γ′ phase is subject to involve the coarsening process during aging treatment, and the coarsening rate decreases with the extension of the aging time at certain temperature. Besides, the coarsening kinetics of γ′ phase in Waspaloy is adequately characterized by the Lifshitz–Slyozov–Wagner (LSW) theory model as the particle size distribution and coarsening behavior show excellent agreement with the LSW model. According to the experimental results and LSW model, the coarsening rate coefficients were determined to be 27.23 nm3/s and 58.67 nm3/s under the aging temperature of 960 °C and 1000 °C respectively. Meanwhile, on the basis of the experimental statistics analysis and the LSW model, the mathematical model of the coarsening behavior of the γ′ phase in Waspaloy was developed. Mathematical model developed in this paper can be used to evaluate the coarsening process of the γ′ phase during thermal exposure. The interfacial energy between the γ′ phase and the γ matrix was determined to be 56.04 mJ/m2 and 44.27 mJ/m2 at the temperature of 960 °C and 1000 °C respectively.


Waspaloy Coarsening behavior γ′ phase LSW model Interfacial energy 



The author would like to thank the support by the National Natural Science Foundation of China (No. 5154195), Fundamental Research Funds for the Central Universities (No. 3102016ZB043), and Shaanxi Key Research and Development Program (No. S2017-ZDYFZDXM-GY-0115).


  1. 1.
    X. Chen, Z. Yao, J. Dong, H. Shen, Y. Wang, J. Alloys Compd. 735, 928–937 (2018)Google Scholar
  2. 2.
    A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, S. Yue, Mater. Sci. Eng. A 615, 497–510 (2014)Google Scholar
  3. 3.
    A. Amiri, S. Bruschi, M.H. Sadeghi, P. Bariani, Mater. Sci. Eng. A 562, 77–82 (2013)Google Scholar
  4. 4.
    S. Olovsjö, L. Nyborg, Wear 282–283, 12–21 (2012)Google Scholar
  5. 5.
    K. Chang, X. Liu, Mater. Sci. Eng. A 308, 1–8 (2001)Google Scholar
  6. 6.
    S. Meher, S. Nag, J. Tiley, A. Goel, R. Banerjee, Acta Mater. 61, 4266–4276 (2013)Google Scholar
  7. 7.
    A.J. Ardell, Acta Mater. 61, 7749–7754 (2013)Google Scholar
  8. 8.
    C. Sudbrack, K. Yoon, R. Noebe, D. Seidman, Acta Mater. 54, 3199–3210 (2006)Google Scholar
  9. 9.
    Z.F. Peng, Y.Y. Ren, Q.S. Mei, B.Z. Fan, P. Yan, J.C. Zhao, Y.Q. Wang, J.H. Sun, Scr. Mater. 42, 1059–1064 (2000)Google Scholar
  10. 10.
    X.Q. Ke, J.E. Morral, Y. Wang, Acta Mater. 76, 463–471 (2014)Google Scholar
  11. 11.
    X.Q. Ke, J.E. Morral, Y. Wang, Acta Mater. 61, 2339–2347 (2013)Google Scholar
  12. 12.
    J.E. Morral, Tsinghua Sci Technol 10, 704–708 (2005)Google Scholar
  13. 13.
    J.E. Morral, Y. Son, M.S. Thompson, in Fundamentals and Applications of Ternary Diffusion, ed. by G.R. Purdy (Pergamon press, Oxford, 1990), pp. 119–126Google Scholar
  14. 14.
    Y. Ma, A.J. Ardell, Mater. Sci. Eng. A 516, 259–262 (2009)Google Scholar
  15. 15.
    Y. Ma, A.J. Ardell, Acta Mater. 55, 4419–4427 (2007)Google Scholar
  16. 16.
    A. Maheshwari, A.J. Ardell, Acta Metall. Mater. 40, 2661–2667 (1992)Google Scholar
  17. 17.
    A.J. Ardell, Acta Metall. 16, 511–516 (1968)Google Scholar
  18. 18.
    A.J. Ardell, R.B. Nicholson, J. Phys. Chem. Solids 27, 1793–1794 (1966)Google Scholar
  19. 19.
    C.G. Garay-Reyes, F. Hernández-Santiago, N. Cayetano-Castro, V.M. López-Hirata, J. García-Rocha, J.L. Hernández-Rivera, H.J. Dorantes-Rosales, J.J. Cruz-Rivera, Mater. Charact. 83, 35–42 (2013)Google Scholar
  20. 20.
    H.J. Zhou, F. Xue, H. Chang, Q. Feng, J. Mater. Sci. Technol. 34, 799–805 (2018)Google Scholar
  21. 21.
    J.E. Morral, G.R. Purdy, Scr. Metall. Mater. 30, 905–908 (1994)Google Scholar
  22. 22.
    C.J. Kuehmann, P.W. Voorhees, Metall. Mater. Trans. A 27, 937–943 (1996)Google Scholar
  23. 23.
    J. Xu, W. Zeng, X. Sun, Z. Jia, J. Zhou, J. Alloys Compd. 631, 248–254 (2015)Google Scholar
  24. 24.
    J. Xu, W. Zeng, Z. Jia, X. Sun, J. Zhou, J. Alloys Compd. 618, 343–348 (2015)Google Scholar
  25. 25.
    S.I. Kardashova, A.Y. Lozovoi, I.M. Razumovskii, Acta Metall. Mater. 42, 3341–3348 (1994)Google Scholar
  26. 26.
    A.J. Ardell, Acta Mater. 61, 7828–7840 (2013)Google Scholar
  27. 27.
    Y.Y. Zhao, H.W. Chen, Z.P. Lu, T.G. Nieh, Acta Mater. 147, 184–194 (2018)Google Scholar
  28. 28.
    C. Li, G. Guo, Z. Yuan, W. Xuan, X. Li, Y. Zhong, Z. Ren, J. Alloys Compd. 720, 272–276 (2017)Google Scholar
  29. 29.
    T.M. Pollock, A.S. Argon, Acta Metall. Mater. 42, 1859–1874 (1994)Google Scholar
  30. 30.
    L. Luo, C. Ai, Y. Ma, S. Li, Y. Pei, S. Gong, Mater. Charact. 142, 27–38 (2018)Google Scholar
  31. 31.
    A. Picasso, A. Somoza, A. Tolley, J. Alloys Compd. 479, 129–133 (2009)Google Scholar
  32. 32.
    W. Sun, Acta Mater. 53, 3329–3334 (2005)Google Scholar
  33. 33.
    A. Baldan, J. Mater. Sci. 37, 2171–2202 (2002)Google Scholar
  34. 34.
    H.A. Calderon, P.W. Voorhees, J.L. Murray, G. Kostorz, Acta Metall. Mater. 42, 991–1000 (1994)Google Scholar
  35. 35.
    X. Li, N. Saunders, A.P. Miodownik, Metall. Mater. Trans. A 33, 3367–3373 (2002)Google Scholar
  36. 36.
    A.M. Ges, O. Fornaro, H.A. Palacio, Mater. Sci. Eng. A 458, 96–100 (2007)Google Scholar
  37. 37.
    Z. Zhu, H. Basoalto, N. Warnken, R.C. Reed, Acta Mater. 60, 4888–4900 (2012)Google Scholar
  38. 38.
    G. Kaptay, J. Mater. Sci. 50, 678–687 (2015)Google Scholar
  39. 39.
    P.K. Footner, B.P. Richards, J. Mater. Sci. 17, 2141–2153 (1982)Google Scholar
  40. 40.
    Y.H. Wen, B. Wang, J.P. Simmons, Y. Wang, Acta Mater. 54, 2087–2099 (2006)Google Scholar
  41. 41.
    S. Zhao, X. Xie, G.D. Smith, S.J. Patel, Mater. Lett. 58, 1784–1787 (2004)Google Scholar
  42. 42.
    A.J. Ardell, R.B. Nicholson, Acta Metall. 14, 1295–1309 (1966)Google Scholar
  43. 43.
    C. OldSoft, Kov. Mater. Met. Mater. 46, 313–322 (2008)Google Scholar
  44. 44.
    K.B.S. Rao, V. Seetharaman, S.L. Mannan, P. Rodriguez, High Temp. Mater. Process. (London) 7, 63–81 (1986)Google Scholar
  45. 45.
    A.J. Ardell, Metall. Mater. Trans. B 1, 525–534 (1970)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.National Innovation Center of Forging and Ring Rolling Technology in Defense IndustryNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  3. 3.AVIC Guizhou Anda Aviation Forging Company LtdGuizhouPeople’s Republic of China
  4. 4.AVIC Shaanxi Hong Yuan Aviation Forging Company LtdXianYangPeople’s Republic of China

Personalised recommendations