Metals and Materials International

, Volume 25, Issue 5, pp 1378–1387 | Cite as

Effect of Microstructure and Texture Evolution During Variable Gauge Rolling on Mechanical Properties of Tailor Rolled Blanks

  • E. ShafieiEmail author
  • K. Dehghani
  • F. Ostovan
  • Meysam Toozandehjani


In this study, anisotropic elastic and plastic mechanical properties of a tailor rolled blank (TRB) with thickness ratio of 0.52 (1 mm/1.9 mm), have been fully studied. To gain a deeper insight into anisotropic mechanical behavior of the studied TRB, continuous changes in microstructure and crystallographic texture of a dual phase steel caused by variable gauge rolling (VGR) were investigated on several points (on RD–ND plane) along longitudinal direction with the aid of EBSD observations. Analysis of grain boundary (GB) maps revealed that ferrite grain refinement is occurred during VGR so that the average ferrite grain size decreases from 4.1 µm for the thicker side to 2.2 µm for the thinner side. Furthermore, it was found out that substructure density is more intense within smaller ferrite grains. Evaluation of inverse pole figures as well as orientation distribution function maps showed that texture of thicker side comprises {001}〈110〉 and {112}〈110〉 components along \( \alpha \)-fiber. In addition, it was revealed that orientations of {111}〈110〉 and {111}〈112〉 along \( \gamma \)-fiber strengthen along VGR direction by further increase in thickness reduction near thinner side. Accordingly, unprecedented gradual changes in mechanical properties with respect to these changes in microstructure and texture, were obtained. Finally, the correlation between in-plane anisotropic mechanical properties [Young’s modulus (E), yield stress (YS), ultimate tensile stress (UTS) and total elongation] of the studied tailor rolled blank with microstructure and deformation texture was interpreted.


Tailor rolled blank TRB Texture Rolling Dual phase EBSD 



  1. 1.
    X. Liu, Z. Wu, F. Zhi, G. Zhang, Y. Zhi, From TRB and LP to variable gauge rolling: technology, theory, simulation and experiment. Mater. Sci. Forum 706–709, 1448–1453 (2012)CrossRefGoogle Scholar
  2. 2.
    J.M. Martinez-Duart, J. Hernandez-Moro, S. Serrano-Calle, R. Gomez-Calvert, New frontiers in sustainable energy production and storage. Vacuum 122, 369–375 (2015)CrossRefGoogle Scholar
  3. 3.
    E. Shafiei, K. Dehghai, Tensile behavior of tailor rolled blanks with longitudinal thickness transition zone: introducing a new tensile specimen. Vacuum 143, 71–86 (2017). CrossRefGoogle Scholar
  4. 4.
    E. Shafiei, A. Soltani Tehrani, F. Ostovan, Tensile behavior of tailor rolled blanks: mathematical modeling and design optimization. SN Appl. Sci. 1, 60 (2019). CrossRefGoogle Scholar
  5. 5.
    A. Meyer, B. Weitbrock, G. Hirt, Increasing of the drawing depth using tailored rolled blanks-numerical and experimental analysis. Int. J. Mach. Tools Manuf. 48, 522–531 (2008)CrossRefGoogle Scholar
  6. 6.
    R. Kopp, C. Weidner, A. Meyer, Flexibly rolled sheet metal and its use in sheet metal forming. Adv. Mater. Res. 6–8, 81–92 (2005)CrossRefGoogle Scholar
  7. 7.
    C.H. Chuang, R.J. Yang, G. Li, K. Mallela, P. Pothurajo, Multidisciplinary design optimization on vehicle tailor rolled blank design. Struct. Multidiscip. Optim. 35, 551–560 (2008)CrossRefGoogle Scholar
  8. 8.
    E. Shafiei, K. Dehghani, Effects of thickness ratio and length of thickness transition zone on tensile behavior of tailor rolled blanks. Trans. Indian. Inst. Met. (2018). Google Scholar
  9. 9.
    L. Duan, G. Sun, J. Cui, T. Chen, A. Chung, G. Li, Struct. Multidiscip. Optim. 53, 321–338 (2016)CrossRefGoogle Scholar
  10. 10.
    G. Sun, H. Zhang, G. Lu, J. Guo, J. Cui, Q. Li, An experimental and numerical study on quasi-static and dynamic crashworthiness for tailor rolled blank (TRB) structures. Mater. Des. 118, 175–197 (2017)CrossRefGoogle Scholar
  11. 11.
    H.W. Zhang, X. Liu, L.Z. Liu, P. Hu, J. Wu, study on nonuniform deformation of tailor rolled blanks during uniaxial tension. Acta Metall. Sin. 28, 1198–1204 (2015)CrossRefGoogle Scholar
  12. 12.
    E. Shafiei, K. Dehghani, Effects of thickness ratio on tensile behavior of tailor rolled blanks. Can. Metall. Q. (2017). Google Scholar
  13. 13.
    G. Hirt, C. Abratis, J. Ames, A. Meyer, Manufacturing of sheet metal parts from tailor rolled blanks. J. Technol. Plast. 30, 1–12 (2005)Google Scholar
  14. 14.
    O. Engler, G. Shafer, H.J. Brinkman, J. Brecht, P. Beiter, K. Nijhof, Flexible rolling of aluminium alloy sheet—process optimization and control of materials properties. J. Mater. Process. Technol. 229, 139–148 (2016)CrossRefGoogle Scholar
  15. 15.
    H.L. Yu, C. Lu, H. Zhu, X. Liu, The wave motion of the rolling force during variable gauge rolling. Steel Res. Int. 84, 1203–1208 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Rihuan, L. Xianghua, X. Chen Shoudong, Z.H. Xianlei, L. Lizhong, Theoretical investigation on the crushing performances of Tailor Rolled Tubes with continuously varying thickness and material properties. Int. J. Mech. Sci. 151, 106–117 (2019)CrossRefGoogle Scholar
  17. 17.
    ASTM E112-13, Standard Test Methods for Determining Average Grain Size, ASTM InternationalGoogle Scholar
  18. 18.
    ISO 9513:2012, Metallic Materials—Calibration of Extensometer Systems in Uniaxial TestingGoogle Scholar
  19. 19.
    ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials (2009).
  20. 20.
    D. Ke, X. Liu, Y. Zhi, H. Xianlei, L. Liu, Experiment on properties differentiation in tailor rolled blank of dual phase steel. Mater. Sci. Eng., A 742, 629–635 (2019)CrossRefGoogle Scholar
  21. 21.
    R. Gonzalez, J.O. Garcia, L.F. Verdeja et al., Mechanical behavior of thermomechanically produced ultrafine grained dual phase steel. Can. Metall. Q. 53, 100–106 (2014)CrossRefGoogle Scholar
  22. 22.
    F.M. Al-Abbasi, Predicting the effect of ultrafine ferrite on the deformation behavior of DP-steels. Comput. Mater. Sci. 119, 90–107 (2016)CrossRefGoogle Scholar
  23. 23.
    F.J. Humphreys, P.B. Prangnell, J.R. Bowen et al., Developing stable fine–grain microstructures by large strain deformation. Philos. Trans. R. Soc. A 357, 1663–1674 (1999)CrossRefGoogle Scholar
  24. 24.
    G.A. Cingara, Y. Ososkov, M.K. Jain, D.S. Wilkinson, Effect of martensite distribution on damage behavior I DP600 dual phase steel. Mater. Sci. Eng., A 516, 7–16 (2009)CrossRefGoogle Scholar
  25. 25.
    F.M. Al-Abbasi, Predicting the effect of ultrafine ferrite on the deformation behavior of DP-steels. Comput. Mater. Sci. 19, 90–107 (2016)CrossRefGoogle Scholar
  26. 26.
    N. Saeidi, F. Shrafizadeh, B. Niroumand, F. Barlat, Steel Res. Int. 85, 9 (2014)CrossRefGoogle Scholar
  27. 27.
    N. Saeidi, F. Shrafizadeh, B. Niroumand, F. Barlat, Mater. Des. 87, 130 (2015)CrossRefGoogle Scholar
  28. 28.
    N. Hansen, Hall–Petch relation and boundary strengthening. Scripta Mater. 51, 801–806 (2004)CrossRefGoogle Scholar
  29. 29.
    A. Ghatei Kalashami, A. Kermanpur, E. Ghassemali, A. Najafizadeh, Y. Mazaheri, J. Alloys Compd. 694, 1026–1035 (2017)CrossRefGoogle Scholar
  30. 30.
    N.F. Mott, A theory of work-hardening of metal crystals. Phil. Mag. 43, 1151–1178 (1952)CrossRefGoogle Scholar
  31. 31.
    J. Friedel, Anomaly in the rigidity modulus of copper alloys for small concentrations. Phil. Mag. 44, 444–448 (1953)CrossRefGoogle Scholar
  32. 32.
    F. Yoshida, T. Uemori, K. Fujiwara, Int. J. Plast 18, 633 (2002)CrossRefGoogle Scholar
  33. 33.
    B. Chungthairungruang, V. Uthaisungsuk, S. Suranuntchai, S. Jirathearanat, Mater. Des. 39, 318–328 (2012)CrossRefGoogle Scholar
  34. 34.
    J.A. Benito, J.M. Manero, J. Jorba, A. Roca, Metall. Trans. A 36A, 3317 (2005)CrossRefGoogle Scholar
  35. 35.
    A. Roca*, A. Villuendas, I. Mejía, J.A. Benito, N. Llorca-Isern, J. Llumà, J. Jorba, Mater. Sci. Forum 783, 2382 (2013)Google Scholar
  36. 36.
    R.K. Ray, J.J. Jonas, R.E. Hook, Int. Mater. Rev. 39, 19 (1994)CrossRefGoogle Scholar
  37. 37.
    A. Tewari, S. Suwas, D. Srivastava, I. Samajdar, A. Haldar, Mater. Sci. Forum 702, 419 (2012)Google Scholar
  38. 38.
    K. Surender, Technology of Metal Forming Processes (Prentice Hall India, New Delhi, 2011). ISBN 978-81-203-3425-0Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIslamic Azad University, Bandarabbas BranchBandarabbasIran
  2. 2.Department of Mining and Metallurgical EngineeringAmirkabir University of TechnologyTehranIran
  3. 3.Razak Faculty of Technology and InformaticsUniversiti Teknologi MalaysiaKuala LumpurMalaysia

Personalised recommendations