Metals and Materials International

, Volume 25, Issue 5, pp 1182–1190 | Cite as

Effect of Multipass Friction Stir Processing on Surface Corrosion Resistance and Wear Resistance of ZK60 Alloy

  • Dejia LiuEmail author
  • Mingxue Shen
  • Yanchuan Tang
  • Yong Hu
  • Longzhi ZhaoEmail author


Multipass friction stir processing (FSP) can result in a homogeneous microstructure and significant improvement in mechanical properties of magnesium alloys. Few studies have concentrated on the surface properties of Mg–Zn–Zr alloy during multipass FSP. The aim of this study was to investigate the microstructure evolutions as well as the effects on the surface corrosion and wear resistance of ZK60 plates during multipass FSP. An interesting finding is that FSP can significantly refine the grains and improve the surface properties of ZK60 alloy. However, subsequent passes of FSP cannot further reduce the grain size in the stir zone, but they cause an increase in the grain size in the ZK60 alloy. In addition, the subsequent passes of FSP are not beneficial, but rather are, harmful to the corrosion resistance of ZK60 alloy. There is little positive effect on the improvement in the wear resistance of ZK60 plates.


Multipass friction stir processing Corrosion resistance Wear resistance Microstructure Hardness ZK60 alloy 



This study was financially supported by National Natural Science Foundation of China (51805171, 51865011), Natural Science Foundation in Jiangxi Province (20181BAB216021), the Opening Project of Key Laboratory of Testing Technology for Manufacturing Process, (Southwest University of Science and Technology), Ministry of Education (18kfzk04).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    L. Commin, M. Dumont, J.E. Masse, L. Barrallier, Acta Mater. 57, 326 (2009)CrossRefGoogle Scholar
  2. 2.
    U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, C.W. Lee, Acta Mater. 57, 5406 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Lü, X. Yang, L. Hao, S. Wu, X. Fang, J. Wang, Met. Mater. Int. 24, 1315 (2018)CrossRefGoogle Scholar
  4. 4.
    M. Sharifzadeh, M.A. Ansari, M. Narvan, R.A. Behnagh, A. Araee, M.K. Besharati Givi, Trans. Nonferr. Metal. Soc. 25, 1847 (2015)CrossRefGoogle Scholar
  5. 5.
    G.-L. Song, Z. Xu, Electrochim. Acta 55, 4148 (2010)CrossRefGoogle Scholar
  6. 6.
    J.R. Kish, G. Williams, J.R. Mcdermid, J.M. Thuss, C.F. Glover, J. Electrochem. Soc. 161, 405 (2014)CrossRefGoogle Scholar
  7. 7.
    N.N. Aung, W. Zhou, Corros. Sci. 52, 589 (2010)CrossRefGoogle Scholar
  8. 8.
    G.B. Hamu, D. Eliezer, L. Wagner, J. Alloys Compd. 468, 222 (2009)CrossRefGoogle Scholar
  9. 9.
    D. Liu, Y. Tang, M. Shen, Y. Hu, L. Zhao, Metals 8, 970 (2018)CrossRefGoogle Scholar
  10. 10.
    A.H. Feng, Z.Y. Ma, Acta Mater. 57, 4248 (2009)CrossRefGoogle Scholar
  11. 11.
    B. Mansoor, A.K. Ghosh, Acta Mater. 60, 5079 (2012)CrossRefGoogle Scholar
  12. 12.
    W. Woo, H. Choo, M.B. Prime, Z. Feng, B. Clausen, Acta Mater. 56, 1701 (2008)CrossRefGoogle Scholar
  13. 13.
    B.L. Xiao, Q. Yang, J. Yang, W.G. Wang, G.M. Xie, Z.Y. Ma, J. Alloys Compd. 509, 2879 (2011)CrossRefGoogle Scholar
  14. 14.
    Q. Yang, B.L. Xiao, Z.Y. Ma, J. Alloys Compd. 551, 61 (2013)CrossRefGoogle Scholar
  15. 15.
    X.C. Luo, D.T. Zhang, W.W. Zhang, C. Qiu, D.L. Chen, Mater. Sci. Eng. A 725, 398 (2018)CrossRefGoogle Scholar
  16. 16.
    A.M. Jamili, A. Zarei-Hanzaki, H.R. Abedi, P. Minárik, R. Soltani, Mater. Sci. Eng. A 690, 244 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Tripathi, A. Tewari, A.K. Kanjarla, N. Srinivasan, G.M. Reddy, S.M. Zhu, J.F. Nie, R.D. Doherty, I. Samajdar, Metall. Mater. Trans. A 47, 2201 (2016)CrossRefGoogle Scholar
  18. 18.
    Z.L. Lu, D.T. Zhang, Mater. Sci. Forum 850, 778 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Alavi Nia, H. Omidvar, S.H. Nourbakhsh, Mater. Des. 58, 298 (2014)CrossRefGoogle Scholar
  20. 20.
    Y.S. Sato, S.H.C. Park, A. Matsunaga, A. Honda, H. Kokawa, J. Mater. Sci. 40, 637 (2005)CrossRefGoogle Scholar
  21. 21.
    C.J. Lee, J.C. Huang, X.H. Du, Mater. Trans. 48, 780 (2007)CrossRefGoogle Scholar
  22. 22.
    D. Orlov, G. Raab, T.T. Lamark, M. Popov, Y. Estrin, Acta Mater. 59, 375 (2011)CrossRefGoogle Scholar
  23. 23.
    D. Liu, R. Xin, L. Zhao, Y. Hu, J. Zhang, Sci. Technol. Weld. Join. 22, 601 (2017)CrossRefGoogle Scholar
  24. 24.
    D. Orlov, K.D. Ralston, N. Birbilis, Y. Estrin, Acta Mater. 59, 6176 (2011)CrossRefGoogle Scholar
  25. 25.
    G.M. Xie, Z.Y. Ma, L. Geng, Mater. Sci. Eng. A 486, 49 (2008)CrossRefGoogle Scholar
  26. 26.
    S. Mironov, Y. Motohashi, T. Ito, A. Goloborodko, K. Funami, R. Kaibyshev, Mater. Trans. 48, 3140 (2007)CrossRefGoogle Scholar
  27. 27.
    H. Chen, H. Yu, S.B. Kang, J.H. Cho, G. Min, Mater. Sci. Eng. A 527, 1236 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Dhanapal, S. Rajendra Boopathy, V. Balasubramanian, Trans. Nonferr. Metal. Soc. 22, 793 (2012)CrossRefGoogle Scholar
  29. 29.
    Y.H. Jang, S.S. Kim, C.D. Yim, C.G. Lee, S.J. Kim, Corros. Eng. Sci. Technol. 42, 119 (2007)CrossRefGoogle Scholar
  30. 30.
    Q. Liu, Q.X. Ma, G.Q. Chen, X. Cao, S. Zhang, J.L. Pan, G. Zhang, Q.Y. Shi, Corros. Sci. 138, 284 (2018)CrossRefGoogle Scholar
  31. 31.
    B.X. Vuong, H.T. Anh, N.T. Nhan, H.H.M. Xuan, D.C. Nguyen, N.D. Nam, J. Mater. Eng. Perform. 26, 3676 (2017)CrossRefGoogle Scholar
  32. 32.
    R.-C. Zeng, J. Zhang, W.-J. Huang, W. Dietzel, K.U. Kainer, C. Blawert, W. Ke, T. Nonferr, Metal. Soc. 16, 763 (2006)Google Scholar
  33. 33.
    G.M. Naik, G.D. Gote, S. Narendranath, S.S. Satheesh Kumar, Mater. Res. Express 5, 086513 (2018)CrossRefGoogle Scholar
  34. 34.
    D. Merson, E. Vasiliev, M. Markushev, A. Vinogradov, Lett. Mater. 7, 421 (2017)CrossRefGoogle Scholar
  35. 35.
    E. Ghali, W. Dietzel, K.-U. Kainer, J. Mater. Eng. Perform. 13, 7 (2004)CrossRefGoogle Scholar
  36. 36.
    A. Dhanapal, S. Rajendra Boopathy, V. Balasubramanian, J. Alloys Compd. 523, 49 (2012)CrossRefGoogle Scholar
  37. 37.
    G. Bhargava, W. Yuan, S.S. Webb, R.S. Mishra, Metall. Mater. Trans. A 41, 13 (2009)CrossRefGoogle Scholar
  38. 38.
    N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Mater. Sci. Eng. A 472, 179 (2008)CrossRefGoogle Scholar
  39. 39.
    S.H.C. Park, Y.S. Sato, H. Kokawa, J. Mater. Sci. 38, 4379 (2003)CrossRefGoogle Scholar
  40. 40.
    B. Song, R. Xin, L. Sun, G. Chen, Q. Liu, Mater. Sci. Eng. A 582, 68 (2013)CrossRefGoogle Scholar
  41. 41.
    P. Asadi, G. Faraji, A. Masoumi, M.K. Besharati Givi, Metall. Mater. Trans. A 42, 2820 (2011)CrossRefGoogle Scholar
  42. 42.
    M. Govindaraju, K.R. Prasad, U. Chakkingal, K. Balasubramanian, Adv. Mater. Res. 585, 397 (2012)CrossRefGoogle Scholar
  43. 43.
    A. Galiyev, R. Kaibyshev, G. Gottstein, Acta Mater. 49, 1199 (2001)CrossRefGoogle Scholar
  44. 44.
    R. Xin, X. Zheng, Z. Liu, D. Liu, R. Qiu, Z. Li, Q. Liu, J. Alloys Compd. 659, 51 (2016)CrossRefGoogle Scholar
  45. 45.
    W.J. Kim, T.Y. Kwak, Met. Mater. Int. 23, 660 (2017)CrossRefGoogle Scholar
  46. 46.
    S.H. Jeong, Y.J. Kim, K.H. Kong, T.H. Cho, Y.K. Kim, H.K. Lim, W.T. Kim, D.H. Kim, Met. Mater. Int. 24, 391 (2018)CrossRefGoogle Scholar
  47. 47.
    G.M. Xie, Z.Y. Ma, L. Geng, J. Mater. Sci. Technol. 25, 351 (2009)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringEast China Jiaotong UniversityNanchangChina
  2. 2.Key Laboratory of Testing Technology for Manufacturing Process Ministry of EducationSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations