Advertisement

Metals and Materials International

, Volume 25, Issue 5, pp 1151–1160 | Cite as

Effects of Ni and Cr on Cryogenic Impact Toughness of Bainite/Martensite Multiphase Steels

  • Zishan Yao
  • Guang XuEmail author
  • Zhengyi Jiang
  • Junyu Tian
  • Qing Yuan
  • Hongwei Ma
Article
  • 107 Downloads

Abstract

In the present research, the effects of Nickel (Ni) and Chromium (Cr) on cryogenic impact toughness (CIT) of low-carbon bainite/martensite multiphase steels [processed by two different cooling processes: isothermal transformation process (ITP) and continuous cooling process (CCP)] were investigated. It was found that due to the formation of carbides during isothermal treatment, the addition of Ni and Cr yielded no significant improvements in CIT. However, during CCP treatment, the addition of Ni manifested a considerable enhancement in CIT, whereas the addition of both Ni and Cr caused a decrease in CIT. Further, after ITP treatment, the microstructure of all steels consisted of bainite and martenite, while Ni + Cr steel contained the largest amount of bainite. The microstructures of the CCP-treated steels mainly also consisted of bainite and martensite, but no retained austenite and carbides were observed, thus resulting in a superior CIT.

Keywords

Cryogenic impact toughness Bainite/martensite multiphase steels Nickel Chromium Microstructure 

Abbreviations

CIT

Cryogenic impact toughness

ITP

Isothermal transformation process

CCP

Continuous cooling process

Ni

Nickel

Cr

Chromium

Bs

Starting temperature of bainitic transformation

Ms

Starting temperature of martensitic transformation

SEM

Scanning electron microscope

TEM

Transmission electron microscope

XRD

X-ray diffraction

RA

Retained austenite

M

Martensite

BF

Bainitic ferrite

TM

Tempered martensite

TC

Tempered carbide

M/A

Martensite and austenite

GB

Granular bainite

LM

Lath martensite

AM

Prior martensite

FM

Fresh martensite

Mn

Manganese

Notes

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (NSFC) (Nos. 51874216 and 51704217), The Major Projects of Technology Innovation of Hubei Province (No. 2017AAA116), The project of Science and Technology Plan of Wuhan (No. 2018010402011187) and Hebei Joint Research Fund for Iron and Steel (No.E2018318013).

References

  1. 1.
    S.V. Konovalov, V.E. Kormyshev, Y.F. Ivanov, V.E. Gromov, I.A. Komissarova, Mater. Sci. Forum 906, 101 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Cao, Z.D. Wang, J. Kang, G.D. Wang, J. Iron. Steel Res. Int. 4, 70 (2013)CrossRefGoogle Scholar
  3. 3.
    V.I. Novikov, V.V. Dmitriev, K.I. Nedashkovskii, Met. Sci. Heat Treat. 56, 159 (2014)CrossRefGoogle Scholar
  4. 4.
    M.I. Hartshorne, C. Mccormick, M. Schmidt, P. Novotny, D. Isheim, D.N. Seidman, M.L. Taheri, Metal. Mater. Trans. A 47, 1517 (2016)CrossRefGoogle Scholar
  5. 5.
    D. Delagnes, F. Pettinaristurmel, M.H. Mathon, R. Danoix, F. Danoix, C. Bellot, P. Lamesle, A. Grellier, Acta Mater. 60, 5877 (2012)CrossRefGoogle Scholar
  6. 6.
    H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, G.H. Liu, Mater. Des. 84, 95 (2015)CrossRefGoogle Scholar
  7. 7.
    W. Solano-Alvarez, E.J. Pickering, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 617, 156 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Lan, L. Du, N. Zhou, X.H. Liu, Acta Metall. Sin. 27, 19 (2014)CrossRefGoogle Scholar
  9. 9.
    W. Yan, L. Zhu, W. Sha, Y.Y. Shan, K. Yang, Mater. Sci. Eng. A 517, 369 (2009)CrossRefGoogle Scholar
  10. 10.
    F.G. Caballero, H. Roelofs, S. Hasler, C. Capdevila, J. Chao, J. Cornide, C. Garcia-Mateo, Mater. Sci. Technol. 28, 95 (2012)CrossRefGoogle Scholar
  11. 11.
    B. Avishan, S. Yazdani, S.H. Nedjad, Mater. Sci. Eng. A 548, 106 (2012)CrossRefGoogle Scholar
  12. 12.
    Z.J. Luo, J.C. Shen, S.U. Hang, Y.H. Ding, C.F. Yang, X. Zhu, J. Iron. Steel Res. Int. 17, 40 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Chakraborty, P.P. Chattopadhyay, D. Bhattacharjee, I. Manna, Metal. Mater. Trans. A 41, 2871 (2010)CrossRefGoogle Scholar
  14. 14.
    D.Y. Liu, H. Xu, K. Yang, B.Z. Bai, H.S. Fang, Acta Metall. Sin. 40, 882 (2004)Google Scholar
  15. 15.
    M. Wang, Z.Y. Liu, C.G. Li, Acta Metall. Sin. 30, 48 (2017)Google Scholar
  16. 16.
    P. Wang, K.S. Kumar, Mater. Sci. Eng. A 519, 184 (2009)CrossRefGoogle Scholar
  17. 17.
    L.U. Ma, G.J. Liang, J. Tan, L.J. Rong, Y.Y. Li, J. Mater. Sci. Technol. 15, 67 (1999)CrossRefGoogle Scholar
  18. 18.
    J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, X.L. Wan, Metals 7, 40 (2017)CrossRefGoogle Scholar
  19. 19.
    D.D. Shen, S.H. Song, Z.X. Yuan, L.Q. Weng, Mater. Sci. Eng. Ser. A 394, 53 (2005)CrossRefGoogle Scholar
  20. 20.
    S.H. Song, H. Zhuang, J. Wu, Z.X. Yuan, T.H. Xi, Mater. Sci. Eng. A 486, 433 (2008)CrossRefGoogle Scholar
  21. 21.
    C.M. Lin, C.M. Chang, J.H. Chen, W. Wu, Mater. Sci. Eng. A 527, 5038 (2010)CrossRefGoogle Scholar
  22. 22.
    H. Pous-Romero, H.K.D.H. Bhadeshia, Metal. Mater. Trans. A 45, 4897 (2014)CrossRefGoogle Scholar
  23. 23.
    M.N. Yoozbashi, S. Yazdani, T.S. Wang, Mater. Des. 32, 3248 (2011)CrossRefGoogle Scholar
  24. 24.
    M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, J.Y. Tian, Steel Res. Int. (2016).  https://doi.org/10.1002/srin.201600377 Google Scholar
  25. 25.
    J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, Steel Res. Int. (2010).  https://doi.org/10.1002/srin.201700469 Google Scholar
  26. 26.
    A.S. Podder, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 527, 2121 (2010)CrossRefGoogle Scholar
  27. 27.
    J.H. Ryu, D.I. Kim, H.S. Kim, H.K.D.H. Bhadeshia, D.W. Suh, Scr. Mater. 63, 297 (2010)CrossRefGoogle Scholar
  28. 28.
    K. Iwanaga, T. Tsuchiyama, S. Takaki, Key Eng. Mater. 171, 477 (2000)Google Scholar
  29. 29.
    Z. Oksiuta, N. Baluc, J. Nucl. Mater. 374, 178 (2008)CrossRefGoogle Scholar
  30. 30.
    Y.Y. Song, D.H. Ping, F.X. Yin, X.Y. Li, Y.Y. Li, Mater. Sci. Eng. A 527, 614 (2010)CrossRefGoogle Scholar
  31. 31.
    A. Kostka, K.G. Tak, R.J. Hellmig, Y. Estrin, G. Eggeler, Acta Mater. 55, 539 (2007)CrossRefGoogle Scholar
  32. 32.
    L. Daróczi, S. Gyöngyösi, L.Z. Tóth, D.L. Beke, Scr. Mater. 114, 161 (2016)CrossRefGoogle Scholar
  33. 33.
    P. Boullay, D. Schryvers, J.M. Ball, Acta Mater. 51, 1421 (2003)CrossRefGoogle Scholar
  34. 34.
    P. Zhang, Y. Chen, W. Xiao, D.H. Ping, X.Q. Zhao, Prog. Nat. Sci-Mater. Int. 26, 169 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations