Advertisement

On the Reversion and Recrystallization of Austenite in the Interstitially Alloyed Ni-Free Nano/Ultrafine Grained Austenitic Stainless Steels

  • D. Rasouli
  • A. KermanpurEmail author
  • E. Ghassemali
  • A. Najafizadeh
Article
  • 11 Downloads

Abstract

The martensite reversion treatment was conducted on two grades of Ni-free austenitic stainless steels interstitially alloyed with C and N. The hot rolled sheets of steels were cold rolled up to 80% thickness reduction to acquire strain-induced α′-martensite and subsequently reversion annealed at temperatures from 700 to 850 °C for 1 to 1000 s to revert the α′-martensite to austenite. Microstructural evolution was investigated using optical microscopy, X-ray diffraction, electron backscatter diffraction, and magnetic measurement techniques. Mechanical properties were measured using tensile tests at room temperature. The resultant microstructures contained both reverted and recrystallized austenite when reverted at 700 and 750 °C with the annealing time less than 100 s. A nonuniform grain structure was characterized under these conditions consisting of nano/ultrafine grains formed via α′-martensite reversion and coarser grains by recrystallization of the retained austenite. However, a more uniform austenite grain size with average size of 1 μm was obtained at 850 °C for 1000 s. The specimens having nonuniform grain structure exhibited excellent combinations of strength and ductility. A variety of mechanical properties was achieved depending on the annealing condition. The work hardening behavior affected UTS and ductility of the studied steels. The shift of the work hardening peaks to the higher strains was found suitable for ductility. Addition of C to N-containing Ni-free steels deteriorated mechanical properties. Best combination of strength and elongation was obtained in the test material with lower C/N ratio.

Keywords

Interstitially alloyed austenitic stainless steel Ni-free stainless steel Reversion annealing Recrystallization Mechanical properties Nano/ultrafine grain size 

Notes

Acknowledgements

The financial support from the Iran National Science Foundation (Research Project No. 93045849) is gratefully acknowledged.

References

  1. 1.
    K.H. Lo, C.H. Shek, J.K.L. Lai, Mater. Sci. Eng. R 65(4–6), 39–104 (2009)CrossRefGoogle Scholar
  2. 2.
    M. Talha, C.K. Behera, O.P. Sinha, Mater. Sci. Eng. C 33(7), 3563–3575 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Black, Handbook of Biomaterials Properties (Chapman & Hall, London, 1998)CrossRefGoogle Scholar
  4. 4.
    K. Tomimura, S. Takaki, Y. Tokunaga, ISIJ Int. 31(12), 1431–1437 (1991)CrossRefGoogle Scholar
  5. 5.
    M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra, A. Kyröläinen, Metall. Mater. Trans. A 40(3), 729–744 (2009)CrossRefGoogle Scholar
  6. 6.
    V.S.A. Challa, R.D.K. Misra, M.C. Somani, Z.D. Wang, Mater. Sci. Eng. A 649, 153–157 (2016)CrossRefGoogle Scholar
  7. 7.
    P. Behjati, A. Kermanpur, A. Najafizadeh, H.S. Baghbadorani, Mater. Sci. Eng. A 592, 77–82 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Eskandari, A. Kermanpur, A. Najafizadeh, Mater. Lett. 63(16), 1442–1444 (2009)CrossRefGoogle Scholar
  9. 9.
    R.D.K. Misra, S. Nayak, P.K.C. Venkatasurya, V. Ramuni, M.C. Somani, L.P. Karjalainen, Metall. Mater. Trans. A 41(8), 2162–2174 (2010)CrossRefGoogle Scholar
  10. 10.
    S. Rajasekhara, L.P. Karjalainen, A. Kyröläinen, P.J. Ferreira, Mater. Sci. Eng. A 527(7–8), 1986–1996 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Srikanth et al., Int. J. Metall. Eng. 2(2), 203–213 (2013)Google Scholar
  12. 12.
    A. Di Schino, I. Salvatori, J.M. Kenny, J. Mater. Sci. 37(21), 4561–4565 (2002)CrossRefGoogle Scholar
  13. 13.
    F. Forouzan, A. Kermanpur, A. Najafizadeh, A. Hedayati, Int. J. Mod. Phys. Conf. Ser. 05, 383–390 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Eskandari, A. Najafizadeh, A. Kermanpur, Mater. Sci. Eng. A 519(1–2), 46–50 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Moallemi, A. Najafizadeh, A. Kermanpur, A. Rezaee, Mater. Sci. Eng. A 530(1), 378–381 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Samaei Baghbadorani, A. Kermanpur, A. Najafizadeh, P. Behjati, A. Rezaee, M. Moallemi, Mater. Sci. Eng. A 636, 593–599 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Rezaee, A. Kermanpur, A. Najafizadeh, M. Moallemi, Mater. Sci. Eng. A 528(15), 5025–5029 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Sumita, T. Hanawa, S.H. Teoh, Mater. Sci. Eng. C 24(6–8), 753–760 (2004)CrossRefGoogle Scholar
  19. 19.
    R.P. Reed, JOM 41(3), 16–21 (1989)CrossRefGoogle Scholar
  20. 20.
    P.J. Uggowitzer, R. Magdowski, M.O. Speidel, ISIJ Int. 36(7), 901–908 (1996)CrossRefGoogle Scholar
  21. 21.
    M.O. Speidel, Materwiss. Werksttech. 37(10), 875–880 (2006)CrossRefGoogle Scholar
  22. 22.
    F.B. Pickering, Int. Mater. Rev. 21, 42 (1976)Google Scholar
  23. 23.
    J. Rawers, M. Grujicic, Mater. Sci. Eng. A 207(2), 188–194 (1996)CrossRefGoogle Scholar
  24. 24.
    Z. Yuan, Q. Dai, X. Cheng, K. Chen, W. Xu, Mater. Sci. Eng. A 475(1–2), 202–206 (2008)CrossRefGoogle Scholar
  25. 25.
    G. Balachandran, M.L. Bhatia, N.B. Ballal, P.K. Rao, ISIJ Int. 41(9), 1018–1027 (2001)CrossRefGoogle Scholar
  26. 26.
    V.G. Gavriljuk, B.D. Shanina, H. Berns, Mater. Sci. Eng. A 481–482(1–2 C), 707–712 (2008)CrossRefGoogle Scholar
  27. 27.
    H. Berns, V.G. Gavriljuk, S. Riedner, A. Tyshchenko, Steel Res. Int. 78(9), 714–719 (2007)CrossRefGoogle Scholar
  28. 28.
    V.G. Gavriljuk, O.N. Razumov, Y.N. Petrov, I. Surzhenko, H. Berns, Steel Res. Int. 78(9), 720–723 (2007)CrossRefGoogle Scholar
  29. 29.
    B.D. Shanina, V.G. Gavriljuk, H. Berns, Steel Res. Int. 78(9), 724–728 (2007)CrossRefGoogle Scholar
  30. 30.
    T.-H. Lee, H.-Y. Ha, B. Hwang, S.-J. Kim, E. Shin, Metall. Mater. Trans. A 43(12), 4455–4459 (2012)CrossRefGoogle Scholar
  31. 31.
    H.-Y. Ha, T.-H. Lee, C.-S. Oh, S.-J. Kim, Steel Res. Int. 80, 488–492 (2009)Google Scholar
  32. 32.
    J. Kang, F.C. Zhang, X.Y. Long, Z.N. Yang, Mater. Sci. Eng. A 610, 427–435 (2014)CrossRefGoogle Scholar
  33. 33.
    H. Feichtinger, G. Stein, Mater. Sci. Forum 318–320, 261–270 (1999)CrossRefGoogle Scholar
  34. 34.
    H. Berns, V. Gavriljuk, S. Riedner, High Interstitial Stainless Austenitic Steels (Springer, Berlin, 2013)CrossRefGoogle Scholar
  35. 35.
    Y. Murata, O. Seiichi, U. Yoshihiro, ISIJ Int. 33(7), 711–720 (1993)CrossRefGoogle Scholar
  36. 36.
    Y. Hosoi, J. Nucl. Mater. 179–181(part 1), 143–147 (1991)CrossRefGoogle Scholar
  37. 37.
    Y. Hosoi, Y. Shimoide, M. Abraham, M. Kutsuna, K. Miyahara, J. Nucl. Mater. 191–194, 686–690 (1992)CrossRefGoogle Scholar
  38. 38.
    K. Miyahara, D.S. Bae, Y. Shimoide, J. Nucl. Mater. 212, 766–771 (1994)CrossRefGoogle Scholar
  39. 39.
    L. Mújica Roncery, S. Weber, W. Theisen, Acta Mater. 59(16), 6275–6286 (2011)CrossRefGoogle Scholar
  40. 40.
    V.G. Gavriljuk, ISIJ Int. 36(7), 738–745 (1996)CrossRefGoogle Scholar
  41. 41.
    Q.X. Dai, Z.Z. Yuan, X.M. Luo, X.N. Cheng, Mater. Sci. Eng. A 385(1–2), 445–448 (2004)CrossRefGoogle Scholar
  42. 42.
    J. Talonen, P. Nenonen, G. Pape, H. Hänninen, Metall. Mater. Trans. A 36, 421–432 (2005)CrossRefGoogle Scholar
  43. 43.
    ASTM E8-00, Standard Method for Tension Testing of Metallic Materials (West Conshohochen, West Conshohochen, 2001)Google Scholar
  44. 44.
    T. Masumura, N. Nakada, T. Tsuchiyama, S. Takaki, T. Koyano, K. Adachi, Acta Mater. 84, 330–338 (2015)CrossRefGoogle Scholar
  45. 45.
    Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, S. Takaki, ISIJ Int. 53(7), 1224–1230 (2013)CrossRefGoogle Scholar
  46. 46.
    D.P. Escobar, S.S. Ferreira de Dafé, D.B. Santos, J. Mater. Res. Technol. 4(2), 162–170 (2015)CrossRefGoogle Scholar
  47. 47.
    S. Sadeghpour, A. Kermanpur, A. Najafizadeh, Mater. Sci. Eng. A 584, 177–183 (2013)CrossRefGoogle Scholar
  48. 48.
    V.G. Gavriljuk, B.D. Shanina, H. Berns, Acta Mater. 48(15), 3879–3893 (2000)CrossRefGoogle Scholar
  49. 49.
    A. Kisko, R.D.K. Misra, J. Talonen, L.P. Karjalainen, Mater. Sci. Eng. A 578, 408–416 (2013)CrossRefGoogle Scholar
  50. 50.
    P. Behjati et al., Mater. Des. 63, 500–507 (2014)CrossRefGoogle Scholar
  51. 51.
    R.E. Schramm, R.P. Reed, Metall. Trans. A 6(7), 1345–1351 (1975)CrossRefGoogle Scholar
  52. 52.
    P.J. Brofman, G.S. Ansell, Metall. Trans. A 9A, 879–880 (1978)CrossRefGoogle Scholar
  53. 53.
    R.P. Reed, M.W. Austin, Scr. Metall. 23, 1359–1362 (1989)CrossRefGoogle Scholar
  54. 54.
    B. Ravi Kumar, S. Sharma, Metall. Mater. Trans. A 45(13), 6027–6038 (2014)CrossRefGoogle Scholar
  55. 55.
    L.F.M. Martins, R.L. Plaut, A.F. Padilha, F.M. Martins, R.L. Plaut, A.F. Padilha, ISIJ Int. 38(6), 572–579 (1998)CrossRefGoogle Scholar
  56. 56.
    L. Kaufman, E. Clougherty, R. Weiss, Acta Metall. 11(5), 323–335 (1963)CrossRefGoogle Scholar
  57. 57.
    Y. Lee, H. Shin, D. Leem, J. Choi, W. Jin, C. Choi, Mater. Sci. Technol. 19, 393–399 (2003)CrossRefGoogle Scholar
  58. 58.
    D. Leem, Y. Lee, J. Jun, Scr. Mater. 45, 767–772 (2001)CrossRefGoogle Scholar
  59. 59.
    A.F. Padilha, R.L. Plaut, P.R. Rios, ISIJ Int. 43(2), 135–143 (2003)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Materials and Manufacturing, School of EngineeringJönköping UniversityJönköpingSweden

Personalised recommendations