Dynamic Failure Investigation in Ultrafine Grained AA2219: Mechanical and Microstructural Analysis

  • Amin AzimiEmail author
  • Gbadebo Moses Owolabi
  • Hamid Fallahdoost
  • Nikhil Kumar
  • Grant Warner


In this study, the high strain rate behavior of ultrafine grained (UFG) AA2219 alloy processed via multi axial forging at cryogenic temperature was investigated. Room temperature forged sample was used as a reference to determine the effects of significant grain size refinement on the dynamic response of the materials. The initial microstructure characterization indicated that severe plastic deformation in the cryogenically process alloy resulted in its grain size reduction to ~ 270 nm and the second phase breakage to finer particles. The results of the dynamic impact tests show that the strain hardening and thermal softening are substantially less significant in the UFG materials, whereas the maximum flow stress and the strain rate sensitivity increased. Furthermore, the grain size reduction led to the absorption of higher portion of the deformation energy and an increase in the toughness of the fabricated UFG material when compared to the conventionally forged samples. This improvement is approximately 56% at a strain rate of 4000 s−1 obtained via the grain structure refinement. Microstructure analysis of the post-deformed samples revealed two fully transformed adiabatic shear bands (ASBs) in the coarser grained material due to intense localized strain and thermal instability during the impact tests which caused the pushing off of the second phases and cracks formation inside the ASBs. However, low-intensity deformed ASBs and a notable enhancement in crack initiation strength were observed by morphology and final configuration of the post-deformed UFG samples. In addition, no considerable hardness variations were experienced in the impacted UFG material due to the saturation of grain size during the cryogenically forging process. In contrary to the UFG alloys, significant hardness increase was observed in the deformed coarse grained material which was associated with softening in the adjacent regions providing a zone prone to cracks initiation.


Ultrafine grained AA2219 Cryogenic forging High strain rates Adiabatic shear bands Split-Hopkinson pressure bar 



Financial support for this work was provided through Contract # W911NF-15-1-0457 under the direct supervision of Patricia Huff (HBCU/MI Program Manager, ARO).


  1. 1.
    F.C. Campbell Jr., Manufacturing Technology for Aerospace Structural Materials, 1st edn. (Elsevier, Amsterdam, 2006)Google Scholar
  2. 2.
    R.Z. Valiev, Met. Mater. Int. 7, 413 (2001)CrossRefGoogle Scholar
  3. 3.
    M. Mesbah, F. Fadaeifard, A. Karimzadeh, B. Nasiri-Tabrizi, A. Rafieerad, G. Faraji, A.R. Bushroa, Met. Mater. Int. 22, 1098 (2016)CrossRefGoogle Scholar
  4. 4.
    N. Hansen, Scr. Mater. 51, 801 (2004)CrossRefGoogle Scholar
  5. 5.
    O. Nejadseyfi, A. Shokuhfar, A. Azimi, M. Shamsborhan, J. Mater. Sci. 50, 1513 (2015)CrossRefGoogle Scholar
  6. 6.
    H.R. Song, Y.S. Kim, W.J. Nam, Met. Mater. Int. 12, 7 (2006)CrossRefGoogle Scholar
  7. 7.
    B.H. Park, H.Y. Um, J.G. Kim, H.Y. Jeong, S. Lee, H.S. Kim, Met. Mater. Int. 22, 1003 (2016)CrossRefGoogle Scholar
  8. 8.
    R. Łyszkowski, T. Czujko, R.A. Varin, J. Mater. Sci. 52, 2902 (2017)CrossRefGoogle Scholar
  9. 9.
    P.N. Rao, D. Singh, R. Jayaganthan, Mater. Des. (1980–2015) 56, 97 (2014)CrossRefGoogle Scholar
  10. 10.
    B. Cherukuri, R. Srinivasan, Mater. Manuf. Process. 21, 519 (2006)CrossRefGoogle Scholar
  11. 11.
    A. Kumar Singh, S. Ghosh, S. Mula, Mater. Sci. Eng. A 651, 774 (2016)CrossRefGoogle Scholar
  12. 12.
    D.C.C. Magalhães, A.M. Kliauga, M. Ferrante, V.L. Sordi, J. Mater. Sci. 52, 7466 (2017)CrossRefGoogle Scholar
  13. 13.
    S.K. Panigrahi, R. Jayaganthan, V. Chawla, Mater. Lett. 62, 2626 (2008)CrossRefGoogle Scholar
  14. 14.
    S.S.L. Vendra, S. Goel, N. Kumar, R. Jayaganthan, Mater. Sci. Eng. A 686, 82 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Yin, J. Lu, H. Ma, P. Zhang, J. Mater. Sci. 39, 2851 (2004)CrossRefGoogle Scholar
  16. 16.
    U.G. Kang, H.J. Lee, W.J. Nam, J. Mater. Sci. 47, 7883 (2012)CrossRefGoogle Scholar
  17. 17.
    S.K. Panigrahi, R. Jayaganthan, V. Pancholi, Mater. Des. 30, 1894 (2009)CrossRefGoogle Scholar
  18. 18.
    D. Fuloria, S. Goel, R. Jayaganthan, D. Srivastava, G.K. Dey, N. Saibaba, Trans. Nonferr. Met. Soc. China 25, 2221 (2015)CrossRefGoogle Scholar
  19. 19.
    S.M. Dasharath, S. Mula, Mater. Sci. Eng. A 690, 393 (2017)CrossRefGoogle Scholar
  20. 20.
    T.-S. Shih, H.-S. Yong, W.-N. Hsu, Metals 6, 1 (2016)CrossRefGoogle Scholar
  21. 21.
    R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, M. Finn, Int. J. Impact Eng. 32, 541 (2005)CrossRefGoogle Scholar
  22. 22.
    G.M. Owolabi, D.T. Bolling, A.G. Odeshi, H.A. Whitworth, N. Yilmaz, A. Zeytinci, J. Mater. Eng. Perform. 26, 5837 (2017)CrossRefGoogle Scholar
  23. 23.
    B. Dodd, Y. Bai, Adiabatic Shear Localization (Elsevier, Oxford, 2012)Google Scholar
  24. 24.
    H. Kolsky, Stress Waves in Solids (Dover Publications, New York, 1963)Google Scholar
  25. 25.
    Y. Song, Z. Guan, Z. Li, M. Wang, Sci. China Ser. E Technol. Sci. 50, 714 (2007)CrossRefGoogle Scholar
  26. 26.
    R. Ly, K.T. Hartwig, H. Castaneda, Corros. Sci. 139, 47 (2018)CrossRefGoogle Scholar
  27. 27.
    S. Liu, S. Wang, L. Ye, Y. Deng, X. Zhang, Mater. Sci. Eng. A 677, 203 (2016)CrossRefGoogle Scholar
  28. 28.
    A.T. Olasumboye, G.M. Owolabi, A.G. Odeshi, N. Yilmaz, A. Zeytinci, J. Dyn. Behav. Mater. 4, 151 (2018)CrossRefGoogle Scholar
  29. 29.
    M. Hockauf, L.W. Meyer, J. Mater. Sci. 45, 4778 (2010)CrossRefGoogle Scholar
  30. 30.
    A. Azimi, A. Shokuhfar, A. Zolriasatein, Mater. Sci. Eng. A 595, 124 (2014)CrossRefGoogle Scholar
  31. 31.
    A. Azimi, H. Fallahdoost, O. Nejadseyfi, Mater. Des. 75, 1 (2015)CrossRefGoogle Scholar
  32. 32.
    A.A. Tiamiyu, A.Y. Badmos, A.G. Odeshi, Mater. Des. 89, 872 (2016)CrossRefGoogle Scholar
  33. 33.
    I.A. Ovid’ko, A.G. Sheinerman, Scr. Mater. 60, 627 (2009)CrossRefGoogle Scholar
  34. 34.
    J. Su, Z. Tang, C. Wang, T. Ye, T. Suo, Y. Li, Int. J. Smart Nano Mater. 8, 56 (2017)CrossRefGoogle Scholar
  35. 35.
    R. Kapoor, S. Nemat-Nasser, Mech. Mater. 27, 1 (1998)CrossRefGoogle Scholar
  36. 36.
    P. Das, R. Jayaganthan, I.V. Singh, Mater. Des. 32, 1298 (2011)CrossRefGoogle Scholar
  37. 37.
    A. Ma, Y. Nishida, J. Jiang, N. Saito, I. Shigematsu, A. Watazu, Trans. Nonferr. Met. Soc. China 17, 104 (2007)CrossRefGoogle Scholar
  38. 38.
    A. Ma, K. Suzuki, Y. Nishida, N. Saito, I. Shigematsu, M. Takagi, H. Iwata, A. Watazu, T. Imura, Acta Mater. 53, 211 (2005)CrossRefGoogle Scholar
  39. 39.
    V.F. Nesterenko, M.A. Meyers, T.W. Wright, Acta Mater. 46, 327 (1998)CrossRefGoogle Scholar
  40. 40.
    M. Bassim, A. Odeshi, Arch. Mater. Sci. Eng. 31, 69 (2008)Google Scholar
  41. 41.
    W. Zhang, X. Chen, B. Zhuo, P. Li, L. He, Mater. Sci. Eng. A 730, 336 (2018)CrossRefGoogle Scholar
  42. 42.
    P. Landau, S. Osovski, A. Venkert, V. Gärtnerová, D. Rittel, Sci. Rep. 6, 37226 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringHoward UniversityWashingtonUSA
  2. 2.Department of Mechanical Engineering, Materials Science and Engineering ProgramBinghamton University (SUNY)BinghamtonUSA

Personalised recommendations