Roles of (Fe, Mn)3Al Precipitates and MBIP on the Hot Ductility Behavior of Fe–30Mn–9Al–0.9C Lightweight Steels

  • Bongyoon Kim
  • Seonghoon Jeong
  • Seong-Jun Park
  • Joonoh Moon
  • Changhee LeeEmail author


In the automotive industry, lightweight steel has received much attention because steel comprises a significant portion of a vehicle’s total weight. Fe–Mn–Al–C steel is a representative lightweight steel due to its high performance and low density. However, there is insufficient research into the welding characteristics of Fe–Mn–Al–C lightweight steels. In this study, hot ductility tests were conducted on austenitic Fe–30Mn–9Al–0.9C steel in order to understand the welding characteristics (cracking resistance) of the heat affected zone. During the on-heating thermal cycle, ductility was altered by a decrease in microband induced plasticity (MBIP) (softening) and an increase in dynamic recrystallization (DRX) (softening) as the temperature increased. Specifically, in the range of 773–1073 K, ductility was fairly degraded because neither MBIP nor DRX took place. During the on-cooling thermal cycle, ductility behavior was changed by both softening and hardening factors, including formation of brittle (Fe, Mn)3Al intermetallic compounds with grain growth and re-solidified grain boundaries. However, the hardening effect of precipitated κ-carbide was insignificant and might not play a significant role in the hot ductility behavior of the lightweight alloy used in this study.


Hot ductility test Lightweight steel Ductility dip (Fe, Mn)3Al intermetallic compound 



This work was supported by the Materials and Components Technology Development Program (10048157) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).


  1. 1.
    M. Ritzkowski, R. Stegmann, Int. J. Greenh. Gas Control 1, 281–288 (2007)CrossRefGoogle Scholar
  2. 2.
    K. Kaygusuz, Renew. Sustain. Energy Rev. 13, 253–270 (2009)CrossRefGoogle Scholar
  3. 3.
    R. Roth, J. Clark, A. Kelkar, JOM 53, 28–32 (2001)CrossRefGoogle Scholar
  4. 4.
    R. Davies, G. Grant, M. Khaleel, M. Smith, H.E. Oliver, Metall. Mater. Trans. A 32, 275–283 (2001)CrossRefGoogle Scholar
  5. 5.
    R. Verma, P. Friedman, A. Ghosh, S. Kim, C. Kim, Metall. Mater. Trans. A 27, 1889–1898 (1996)CrossRefGoogle Scholar
  6. 6.
    M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39, 851–865 (2008)CrossRefGoogle Scholar
  7. 7.
    H. Palaniswamy, G. Ngaile, T. Altan, J. Mater. Process. Technol. 146, 52–60 (2004)CrossRefGoogle Scholar
  8. 8.
    T. Barnes, I. Pashby, J. Mater. Process. Technol. 99, 62–71 (2000)CrossRefGoogle Scholar
  9. 9.
    W. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Mater. Sci. Eng. A 280, 37–49 (2000)CrossRefGoogle Scholar
  10. 10.
    C. Blawert, N. Hort, K. Kainer, Trans. Indian Inst. Met. 57, 397–408 (2004)Google Scholar
  11. 11.
    H. Kim, D.-W. Suh, N.J. Kim, Sci. Technol. Adv. Mater. 14, 014205 (2013)CrossRefGoogle Scholar
  12. 12.
    D. Raabe, H. Springer, I. Gutiérrez-Urrutia, F. Roters, M. Bausch, J.-B. Seol, M. Koyama, P.-P. Choi, K. Tsuzaki, JOM 66, 1845–1856 (2014)CrossRefGoogle Scholar
  13. 13.
    K. Choi, C.-H. Seo, H. Lee, S. Kim, J.H. Kwak, K.G. Chin, K.-T. Park, N.J. Kim, Scr. Mater. 63, 1028–1031 (2010)CrossRefGoogle Scholar
  14. 14.
    S.-H. Kim, H. Kim, N.J. Kim, Nature 518, 77–79 (2015)CrossRefGoogle Scholar
  15. 15.
    C.H. Chao, N.J. Ho, J. Mater. Sci. 27, 4139–4144 (1992)CrossRefGoogle Scholar
  16. 16.
    C.-P. Chou, C.-H. Lee, Scr. Metall. 23, 901–906 (1989)CrossRefGoogle Scholar
  17. 17.
    J. Moon, S.-J. Park, J. Weld. Join. 33, 31–34 (2015)CrossRefGoogle Scholar
  18. 18.
    B.K. Srivastava, S. Tewari, J. Prakash, Int. J. Eng. Sci. Technol. 2, 625–631 (2010)Google Scholar
  19. 19.
    J. Moon, C. Lee, Acta Mater. 57, 2311–2320 (2009)CrossRefGoogle Scholar
  20. 20.
    Y. Shi, Z. Han, J. Mater. Process. Technol. 207, 30–39 (2008)CrossRefGoogle Scholar
  21. 21.
    R. Thompson, S. Genculu, Weld. J. 62, 337s–345s (1983)Google Scholar
  22. 22.
    E.F. Nippes, W.F. Savage, Weld. J. 28, 534–546 (1949)Google Scholar
  23. 23.
    C.L. Lin, C.G. Chao, H.Y. Bor, T.F. Liu, Mater. Trans. 51, 1084–1088 (2010)CrossRefGoogle Scholar
  24. 24.
    J.D. Yoo, K.-T. Park, Mater. Sci. Eng. A 496, 417–424 (2008)CrossRefGoogle Scholar
  25. 25.
    K.-T. Park, G. Kim, S.K. Kim, S.W. Lee, S.W. Hwang, C.S. Lee, Met. Mater. Int. 16, 1–6 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Yoo, S. Hwang, K.-T. Park, Metall. Mater. Trans. A 40, 1520–1523 (2009)CrossRefGoogle Scholar
  27. 27.
    S.-G. Hong, S.-B. Lee, J. Nucl. Mater. 340, 307–314 (2005)CrossRefGoogle Scholar
  28. 28.
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater Sci. 60, 130–207 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Gulyaev, E. Svistunova, Scr. Metall. Mater. 33, 1497–1503 (1995)CrossRefGoogle Scholar
  30. 30.
    I. Pestov, N. Leonova, A.Y. Maloletnev, M. Perkas, A. Sorokin, Met. Sci. Heat Treat. 32, 608–612 (1990)CrossRefGoogle Scholar
  31. 31.
    Z. Wang, Y. Zhou, Y. Xia, J. Mater. Sci. 32, 2387–2390 (1997)CrossRefGoogle Scholar
  32. 32.
    Y. Li, S. Gerasimov, U. Puckov, H. Ma, J. Wang, Mater. Res. Innov. 11, 133–136 (2007)CrossRefGoogle Scholar
  33. 33.
    A. Egbewande, H. Zhang, R. Sidhu, O. Ojo, Metall. Mater. Trans. A 40, 2694 (2009)CrossRefGoogle Scholar
  34. 34.
    J. Lippold, Weld. J. Res. Suppl. 62 1s–11s (1983)Google Scholar
  35. 35.
    C. Chao, T. Liu, Metall. Trans. A 24, 1957–1963 (1993)CrossRefGoogle Scholar
  36. 36.
    O. Acselrad, I. Kalashnikov, E. Silva, M.S. Khadyev, R. Simao, Met. Sci. Heat Treat. 48, 543–553 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Division of Materials Science and EngineeringHanyang UniversitySeoulRepublic of Korea
  2. 2.Korea Ferrous Alloy Department, Advanced Metallic Materials DivisionKorea Institute of Materials ScienceChangwonRepublic of Korea

Personalised recommendations