Advertisement

Evaluation of Hot Deformation and Dynamic Recrystallization Behaviors of Advanced Reduced-Activated Alloy (ARAA)

  • Sang-Wook Kim
  • Hyeon-Woo Son
  • Taek-Kyun Jung
  • Young-Bum Chun
  • Yi-Hyun Park
  • Ji-Woon LeeEmail author
  • Soong-Keun HyunEmail author
Article
  • 15 Downloads

Abstract

The hot deformation behavior of advanced reduced-activation alloy (ARAA) was investigated using hot torsion tests. The flow stress decreased as deformation temperature increased and as strain rate decreased. The flow behavior demonstrated the typical dynamic recrystallization (DRX). Based on the constitutive analysis of peak stress, the activation energy for hot deformation was found to be 330.3 kJ mol−1. Peak stress was analyzed as a function of the Zener–Hollomon parameter, and calculated and experimental values were in good agreement. A DRX kinetic model for ARAA was derived with deformation conditions based on the Avrami-type model. It was confirmed that the volume fraction of dynamically recrystallized grains increased as deformation temperature increased and as strain rate decreased. The necklace structure and grain boundary bulging were observed in the deformed microstructure of ARAA. The suggested DRX mechanism for ARAA during hot working is discontinuous DRX.

Keywords

RAFM steel Hot deformation Flow behavior Dynamic recrystallization Constitutive analysis 

Notes

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Republic of Korea (No. 2017R1A2B4010034).

References

  1. 1.
    L. Tan, Y. Katoh, A.-A.F. Tavssoli, J. Henry, M. Rieth, H. Sakasegawa, H. Tanigawa, Q. Huang, J. Nucl. Mater. 479, 515 (2016)CrossRefGoogle Scholar
  2. 2.
    S.J. Zinkle, N.M. Ghoniem, Fusion Eng. Des. 51–52, 55 (2000)CrossRefGoogle Scholar
  3. 3.
    B. van der Schaaf, D.S. Gelles, S. Jitsukawa, A. Kimura, R.L. Klueh, A. Moslang, G.R. Odette, J. Nucl. Mater. 283–287, 52 (2000)CrossRefGoogle Scholar
  4. 4.
    R.L. Klueh, A.T. Nelson, J. Nucl. Mater. 371, 37 (2007)CrossRefGoogle Scholar
  5. 5.
    L. Tan, Y. Yang, J.T. Busby, J. Nucl. Mater. 442, S13 (2013)CrossRefGoogle Scholar
  6. 6.
    L. Tan, D.T. Hoelzer, J.T. Busby, M.A. Sokolov, R.L. Klueh, J. Nucl. Mater. 422, 45 (2012)CrossRefGoogle Scholar
  7. 7.
    L. Tan, L.L. Snead, Y. Katoh, J. Nucl. Mater. 478, 42 (2016)CrossRefGoogle Scholar
  8. 8.
    K.C. Sahoo, J. Vanaja, P. Parameswaran, V.D. Vijayanand, K. Laha, Mater. Sci. Eng. A 686, 54 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Vanaja, K. Laha, R. Mythili, K.S. Chandravathi, S. Saroja, M.D. Mathew, Mater. Sci. Eng. A 533, 17 (2012)CrossRefGoogle Scholar
  10. 10.
    B. van der Schaaf, F. Tavassoli, C. Fazio, E. Rigal, E. Diegele, R. Lindau, G. LeMarois, Fusion Eng. Des. 69, 179 (2003)Google Scholar
  11. 11.
    S. Jitsukawa, M. Tamura, B. van der Schaaf, R.L. Klueh, A. Alamo, C. Petersen, M. Schirra, P. Spaetig, G.R. Odette, A.A. Tavassoli, K. Shiba, A. Kohyama, A. Kimura, J. Nucl. Mater. 307–311, 179 (2002)CrossRefGoogle Scholar
  12. 12.
    R.L. Klueh, P.J. Maziasz, Metall. Trans. A 20, 373 (1989)CrossRefGoogle Scholar
  13. 13.
    J.N. Yu, Q.Y. Huang, F.R. Wan, J. Nucl. Mater. 367–370, 97 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Banerjee, J. Nucl. Mater. 455, 217 (2014)CrossRefGoogle Scholar
  15. 15.
    Y.B. Chun, S.H. Kang, S. Noh, T.K. Kim, D.W. Lee, S. Cho, Y.H. Jeong, J. Nucl. Mater. 455, 212 (2014)CrossRefGoogle Scholar
  16. 16.
    Y.B. Chun, D.W. Lee, S. Cho, C.K. Rhee, Mater. Sci. Eng. A 645, 286 (2015)CrossRefGoogle Scholar
  17. 17.
    S.J. Noh, S.K. Lee, W.J. Byeon, Y.B. Chun, Y.H. Jeong, Fusion Eng. Des. 89, 2726 (2014)CrossRefGoogle Scholar
  18. 18.
    D.S. Fields, W.A. Backofen, Proc. ASTM 57, 1259 (1957)Google Scholar
  19. 19.
    S.L. Semiatin, G. Lahoti, J.J. Jonas, ASM Metals Handbook, 9th edn. (American Society for Metals, Metals Park, 1985), pp. 154–184Google Scholar
  20. 20.
    J.W. Lee, K.T. Son, T.K. Jung, Y.O. Yoon, S.K. Kim, H.J. Choi, S.K. Hyun, Mater. Sci. Eng. A 673, 648 (2016)CrossRefGoogle Scholar
  21. 21.
    K.T. Son, M.H. Kim, S.W. Kim, J.W. Lee, S.K. Hyun, J. Alloys Compd. 740, 96 (2018)CrossRefGoogle Scholar
  22. 22.
    F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Oxford, 2004), pp. 415–450CrossRefGoogle Scholar
  23. 23.
    H.J. McQueen, Mater. Sci. Eng. A 387–389, 203 (2004)CrossRefGoogle Scholar
  24. 24.
    K. Huang, R.E. Loge, Mater. Des. 111, 548 (2016)CrossRefGoogle Scholar
  25. 25.
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater Sci. 60, 130 (2014)CrossRefGoogle Scholar
  26. 26.
    H.J. McQueen, N.D. Ryan, Mater. Sci. Eng. A 322, 43 (2002)CrossRefGoogle Scholar
  27. 27.
    H.J. McQueen, S. Yue, N.D. Ryan, E. Fry, J. Mater. Process. Technol. 53, 293 (1995)CrossRefGoogle Scholar
  28. 28.
    Y.C. Lin, X.M. Chen, Mater. Des. 32, 1733 (2011)CrossRefGoogle Scholar
  29. 29.
    J.J. Jonas, C.M. Sellars, W.J. McTegart, Metall. Rev. 14, 1 (1969)Google Scholar
  30. 30.
    C.M. Sellars, W.J. McTegart, Acta Metall. 14, 1136 (1966)CrossRefGoogle Scholar
  31. 31.
    W.T. Wang, X.Z. Guo, B. Huang, J. Tao, H.G. Li, W.J. Pei, Mater. Sci. Eng. A 599, 134 (2014)CrossRefGoogle Scholar
  32. 32.
    N.D. Ryan, H.J. McQueen, J. Mater. Process. Technol. 21, 177 (1990)CrossRefGoogle Scholar
  33. 33.
    E.I. Poliak, J.J. Jonas, ISIJ Int. 43, 692 (2003)CrossRefGoogle Scholar
  34. 34.
    A. Najafizadeh, J.J. Jonas, ISIJ Int. 46, 1679 (2006)CrossRefGoogle Scholar
  35. 35.
    C. Zhang, L. Zhang, W. Shen, C. Liu, Y. Xia, R. Li, Mater. Des. 90, 804 (2016)CrossRefGoogle Scholar
  36. 36.
    J.J. Jonas, X. Quelenncec, L. Jiang, E. Martin, Acta Mater. 57, 2748 (2009)CrossRefGoogle Scholar
  37. 37.
    S.I. Kim, Y.C. Yoo, Mater. Sci. Eng. A 311, 108 (2001)CrossRefGoogle Scholar
  38. 38.
    H.Y. Son, T.K. Jung, J.W. Lee, S.K. Hyun, Mater. Sci. Eng. A 695, 379 (2017)CrossRefGoogle Scholar
  39. 39.
    K.T. Son, J.W. Lee, T.K. Jung, H.J. Choi, S.W. Kim, S.K. Kim, Y.O. Yoon, S.K. Hyun, Met. Mater. Int. 23, 68 (2017)CrossRefGoogle Scholar
  40. 40.
    J. Liu, Z. Cui, L. Ruan, Mater. Sci. Eng. A 529, 300 (2010)CrossRefGoogle Scholar
  41. 41.
    A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Metall. Mater. Trans. A 39A, 1359 (2008)CrossRefGoogle Scholar
  42. 42.
    A.M. Wusatowska-Sarnek, H. Mirua, T. Sakai, Mater. Sci. Eng. A 323, 177 (2002)CrossRefGoogle Scholar
  43. 43.
    H. Miura, H. Aoyama, T. Sakai, J. Jpn. Inst. Met. 58, 267 (1994)CrossRefGoogle Scholar
  44. 44.
    X.M. Chen, Y.C. Lin, M.S. Chen, H.B. Li, D.X. Wen, J.L. Zhang, M. He, Mater. Des. 77, 41 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Sang-Wook Kim
    • 1
  • Hyeon-Woo Son
    • 1
  • Taek-Kyun Jung
    • 1
  • Young-Bum Chun
    • 2
  • Yi-Hyun Park
    • 3
  • Ji-Woon Lee
    • 1
    • 4
    Email author
  • Soong-Keun Hyun
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringInha UniversityIncheonRepublic of Korea
  2. 2.Nuclear Materials Development DivisionKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  3. 3.ITER KoreaNational Fusion Research InstituteDaejeonRepublic of Korea
  4. 4.Mechanical and Materials Engineering DepartmentPortland State UniversityPortlandUSA

Personalised recommendations