Advertisement

Metals and Materials International

, Volume 25, Issue 3, pp 740–750 | Cite as

Effect of Aging on the Corrosion Resistance of 2209 Duplex Stainless Steel Weldments

  • Donghoon Kang
  • Nohoon Kim
  • Haewoo LeeEmail author
Article
  • 320 Downloads

Abstract

In this study, we investigated the correlation between the microstructure and the localized corrosion characteristics for a weld metal made up of 22Cr-9Ni duplex stainless steel (DSS) aged in the range of 400–1000 °C for 30 min. The results showed that changes in the microstructure of the DSS weldments, owing to the formation of precipitates during the aging process, affected its pitting corrosion resistance. The microstructural evolution was found to be extremely sensitive to the secondary phase precipitations such as chi (χ), sigma (σ), chromium nitride (Cr2N), and secondary austenite (γ2) in the aging range of 700–900 °C. The potentiodynamic polarization tests confirmed that the pitting potential representing the corrosion resistance decreased gradually from 500 °C, attained the lowest at 850 °C, and increased again at 900 °C. In addition, the Cr or Mo deficient area around σ phase was transformed into the secondary austenite (γ2) phase during aging where the pitting was found to occur.

Keywords

Duplex stainless steel weldments Aging Precipitation Pitting corrosion Potentiodynamic polarization tests 

Notes

Acknowledgements

This study was supported by the Dong-A university research fund.

References

  1. 1.
    I. Varol, W.A. Baeslack III, Mater. Charact. 39, 553–573 (1997)CrossRefGoogle Scholar
  2. 2.
    J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, 1st edn. (Wiley, Hoboken, 2005), pp. 230–234Google Scholar
  3. 3.
    M. Esmailzadeh et al., Microstructure and mechanical properties of friction stir welded lean duplex stainless steel. Mater. Sci. Eng. A 561, 486–491 (2013)CrossRefGoogle Scholar
  4. 4.
    S.K. Ahn, J.S. Kim, K.T. Kim, Development trends of duplex stainless steels for the process industries and it’s weldability. J. KWJS 28, 22–33 (2010)Google Scholar
  5. 5.
    K. Ravindranath, S.N. Malhotra, The influence of aging on the intergranular corrosion of 22 chromium–5 nickel duplex stainless steel. Corros. Sci. 37, 121–132 (1995)CrossRefGoogle Scholar
  6. 6.
    V. Muthupandi, P.B. Srinivasan, S.K. Seshadri, S. Sundaresan, Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Mater. Sci. Eng. A 358, 9–16 (2003)CrossRefGoogle Scholar
  7. 7.
    J. Charles, Super duplex stainless steels: structure and properties, in duplex stainless steels’91, vol. 1 (Les Editions de Physique, Les Ulis, 1991), pp. 3–48Google Scholar
  8. 8.
    J. Dobranszky, P.J. Szabo, T. Berecz, V. Hrotko, M. Portko, Energy-dispersive spectroscopy and electron backscatter diffraction analysis of isothermally aged SAF 2507 type superduplex stainless steel. Spectrochim. Acta B 59, 1781–1788 (2004)CrossRefGoogle Scholar
  9. 9.
    Z. Zhang et al., Effect of isothermal aging on the pitting corrosion resistance of UNS S82441 duplex stainless steel based on electrochemical detection. Corros. Sci. 93, 120–125 (2015)CrossRefGoogle Scholar
  10. 10.
    L. Zhang, Y. Jiang, B. Deng, W. Zhang, X. Juliang, J. Li, Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel. Mater. Charact. 60, 1522–1528 (2009)CrossRefGoogle Scholar
  11. 11.
    M.E. Wilms, V.J. Gadgil, J.M. Krougmen, F.P. Ijsseling, The effect of sigma-phase precipitation at 800 °C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel. Corros. Sci. 36, 871–881 (1994)CrossRefGoogle Scholar
  12. 12.
    C.J. Park, H.S. Kwon, M.M. Lohrengel, Micro-electrochemical polarization study on 25% Cr duplex stainless steel. Mater. Sci. Eng. A 372, 180–185 (2004)CrossRefGoogle Scholar
  13. 13.
    R. Magnabosco, N.A. Falleiros, Pit morphology and its relation to microstructure of 850 °C aged duplex stainless steel. Corrosion 61, 130–136 (2005)CrossRefGoogle Scholar
  14. 14.
    B. Deng, Z. Wang, Y. Jiang, H. Wang, J. Gao, J. Li, Evaluation of localized corrosion in duplex stainless steel aged at 850 °C with critical pitting temperature measurement. Electrochim. Acta 54, 2790–2794 (2009)CrossRefGoogle Scholar
  15. 15.
    S.S.M. Tavares, V.F. Terra, J.M. Pardal, M.P.C. Fonseca, Influence of the microstructure on the toughness of a duplex stainless steel UNS S31803. J. Mater. Sci. 40, 145–154 (2005)CrossRefGoogle Scholar
  16. 16.
    S.S.M. Tavares, V.F. Terra, Corrosion resistance evaluation of the UNS S31803 duplex stainless steels aged at low temperatures (350–550 °C) using DLEPR tests. J. Mater. Sci. 40, 4025–4028 (2005)CrossRefGoogle Scholar
  17. 17.
    B. Deng, Z. Wang, Y. Jiang, T. Sun, X. Juliang, J. Li, Effec of thermal cycles on the corrosion and mechanical properties of UNS S31803 duplex stainless steel. Corros. Sci. 51, 2969–2975 (2009)CrossRefGoogle Scholar
  18. 18.
    H. Hoffmeister, G. Lothongkum, Weld World 33, 2 (1994)Google Scholar
  19. 19.
    V. Vignal, N. Mary, P. Ponthiaux, F. Wenger, Wear 261(9), 947–953 (2006)CrossRefGoogle Scholar
  20. 20.
    K.L. Weng, H.R. Chen, J.R. Yang, The low-temperature aging embrittlement in a 2205 duplex stainless steel. Mater. Sci. Eng. A 379, 119–132 (2004)CrossRefGoogle Scholar
  21. 21.
    A. Mateo, L. Llanes, M. Anglada, A. Redjaimia, G. Metauer, J. Mater. Sci. 32, 4533–4540 (1997)CrossRefGoogle Scholar
  22. 22.
    F. Danoix, P. Auger, Mater. Charact. 44, 177 (2000)CrossRefGoogle Scholar
  23. 23.
    S.K. Ghosh, S. Mondal, High temperature ageing behavior of a duplex stainless steel. Mater. Charact. 59(12), 1776–1783 (2008)CrossRefGoogle Scholar
  24. 24.
    F. Iacoviello, F. Casari, S. Gialanella, Effect of “475 °C embrittlement” on duplex stainless steels localized corrosion resistance. Corros. Sci. 47, 909–922 (2005)CrossRefGoogle Scholar
  25. 25.
    J.K. Sahu, U. Krupp, R.N. Ghosh, H.-J. Christ, Effect of 475 °C embrittlement on the mechanical properties of duplex stainless steel. Mater. Sci. Eng. A 508, 1–14 (2009)CrossRefGoogle Scholar
  26. 26.
    T.H. Chen, K.L. Weng, J.R. Yang, The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel. Mater. Sci. Eng. A 338, 259–270 (2002)CrossRefGoogle Scholar
  27. 27.
    L. Karlsson, Proceedings of 5th World Conference on Duplex Stainless Steels, Maastricht, 1997, pp. 55–95Google Scholar
  28. 28.
    N. Lopez, M. Cid, M. Puiggali, Influence of σ-phase on mechanical properties and corrosion resistance of duplex stainless steels. Corros. Sci. 41, 1615–1631 (1999)CrossRefGoogle Scholar
  29. 29.
    J.O. Nilsson, P. Kangas, T. Karlsson, A. Wilson, Mechanical properties, microstructural stability and kinetics of σ-phase formation in 29Cr–6Ni–2Mo–0.38 N superduplex stainless steel. Metall. Mater. Trans. A 31A, 35–45 (2000)CrossRefGoogle Scholar
  30. 30.
    A.J. Ramirez, J.C. Lippold, S.D. Brandi, Metall. Mater. Trans. A 34(A), 1575–1597 (2003)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018
corrected publication February 2019

Authors and Affiliations

  1. 1.Technical Research CenterHyundai Steel Co. Ltd.DanginRepublic of Korea
  2. 2.Department of Materials Science and EngineeringDong-A UniversityBusanRepublic of Korea

Personalised recommendations