Advertisement

Metals and Materials International

, Volume 25, Issue 3, pp 539–545 | Cite as

Investigation on the Relationship Between Transition Energy and the Color Change of Cu–M Alloys

  • Yeon Beom Jeong
  • Sung Hwan Hong
  • Jeong Tae Kim
  • Hae Jin Park
  • Young Seok Kim
  • Hoo Dam Lee
  • Jong Kook Lee
  • Sang Chul Mun
  • Yun Jung Hwang
  • Kwang Heo
  • Ki Buem KimEmail author
Article
  • 150 Downloads

Abstract

A series of Cu–M color alloys were investigated with two additional elements, Zn and Ga, that have adequate solubility to copper, which means that a wide region of solid-solution phase exists in the Cu-rich area in terms of color variation. To measure the color change of the alloys, the reflectivity difference analysis, the color difference and the transition energy were utilized. As the amount of minor alloying elements increased, the proportional relationship was found between the transition energy and the color difference compared to copper, for example, the color difference mounted with the increase of transition energy. A significant color difference was found when gallium was employed as the minor element. In other words, the influence of gallium on the color change was more evident than with Zn. It appears to be about 4.5 of the color difference when 3 at% of gallium was added.

Keywords

Reflectivity spectra Inter-band transition Optical properties Alloys Transition energy Color variation 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) and the grant was funded by the Korean government (MSIT-No. 2018R1A2B3007167). It was supported by the Human Resources Development of the Korean Institute of Energy Technology Evaluation and Planning (KETEP), and the Grant was funded by the Korean Government Ministry of Trade, Industry and Energy (No. 20164030201340).

References

  1. 1.
    S. Niyomsoan, W. Grant, D.L. Olson, B. Mishra, Thin Solid Films 415, 187 (2002)CrossRefGoogle Scholar
  2. 2.
    A. Mumtaz, W. Class, J. Vac. Sci. Technol., A 20, 345 (1982)CrossRefGoogle Scholar
  3. 3.
    L. Sun, X. Hu, B. Zeng, L. Wang, S. Yang, R. Tai, H. Fecht, D. Zhang, J. Jiang, Nanotechnology 26, 305204 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Henderson, D. Manchanda, Gold Bull. 38, 55 (2005)CrossRefGoogle Scholar
  5. 5.
    M. Schrinner, F. Polzer, Y. Mei, Y. Lu, B. Haupt, M. Ballauff, A. Göldel, M. Drechsler, J. Preussner, U. Glatzel, Macromol. Chem. Phys. 208, 1542 (2007)CrossRefGoogle Scholar
  6. 6.
    J. He, Q. Cai, H. Luo, L. Yu, B. Wei, J. Alloys. Compd. 471, 395 (2009)CrossRefGoogle Scholar
  7. 7.
    J.M. Runge, The metallurgy of anodizing aluminum: connecting science to practice, 1st edn. (Springer, Berlin, 2018), pp. 149–248CrossRefGoogle Scholar
  8. 8.
    R. Nastasi-Andrews, R. Hummel, Phys. Rev. B 16, 4314 (1977)CrossRefGoogle Scholar
  9. 9.
    V. Keast, J. Ewald, K. De Silva, M. Cortie, B. Monnier, D. Cuskelly, E. Kisi, J. Alloys. Compd. 647, 129 (2015)CrossRefGoogle Scholar
  10. 10.
    B. Cooper, H. Ehrenreich, H. Philipp, Phys. Rev. 138, A494 (1965)CrossRefGoogle Scholar
  11. 11.
    M. Ordal, L. Long, R. Bell, S. Bell, R. Bell, R. Alexander, C. Ward, Appl. Opt. 22, 1099 (1965)CrossRefGoogle Scholar
  12. 12.
    G.A. Burdick, Energy band structure of copper. Phys. Rev. 129, 138 (1963)CrossRefGoogle Scholar
  13. 13.
    C. Tyzack, G. Raynor, Acta Crystallogr. 7, 505 (1954)CrossRefGoogle Scholar
  14. 14.
    H. Kanzaki, J. Phys. Chem. Solids 2, 24 (1957)CrossRefGoogle Scholar
  15. 15.
    W.D. Callister, Fundamentals of materials science and engineering, 2nd edn. (Wiley, London, 2000), pp. s197–s297Google Scholar
  16. 16.
    C. Caceres, D. Rovera, J. Light Met. 1, 151 (2001)CrossRefGoogle Scholar
  17. 17.
    T.J. Rupert, J.C. Trenkle, C.A. Schuh, Acta Mater. 59, 1619 (2011)CrossRefGoogle Scholar
  18. 18.
    J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, Z. Lu, Acta Mater. 62, 105 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Meyers, Mechanical behavior of materials, 2nd edn. (Cambridge University Press, Cambridge, 2008), pp. 558–591CrossRefGoogle Scholar
  20. 20.
    T.H. Courtney, Mechanical behavior of materials, 2nd edn. (Waveland Press, Long Grove, 2005), p. 130Google Scholar
  21. 21.
    M. Hansen, K. Anderko, Constitution of binary alloys, 1st edn. (McGraw-Hill, New York, 1958), p. 989Google Scholar
  22. 22.
    W. Hume-Rothery, G.V. Raynor, J. Inst. Met. 61, 205 (1937)Google Scholar
  23. 23.
    L.E. Arend, B. Spehar, Percept. Psychophys. 54, 457 (1993)CrossRefGoogle Scholar
  24. 24.
    N. Ohta, A. Robertson, Colorimetry: fundamentals and applications, 1st edn. (Wiley, Hoboken, 2006), pp. 63–174CrossRefGoogle Scholar
  25. 25.
    S. Berns Roy, Principles of color technology, 3rd edn. (Wiley, Hoboken, 2000), pp. 59–219Google Scholar
  26. 26.
    M.J. Vrhel, R. Gershon, L.S. Iwan, Color Res. Appl. 19, 4 (1994)CrossRefGoogle Scholar
  27. 27.
    S. Steinemann, W. Wolf, R. Podloucky, Color and optical properties, intermetallic compounds-principles and practice: progress, vol. 3, 1st edn. (Wiley, Hoboken, 2002), pp. 231–244CrossRefGoogle Scholar
  28. 28.
    J. Cai, A. Goshtasby, Image Vis. Comput. 18, 63 (1999)CrossRefGoogle Scholar
  29. 29.
    G.M. Johnson, X. Song, E.D. Montag, M.D. Fairchild, Color Res. Appl. 35, 387 (2010)CrossRefGoogle Scholar
  30. 30.
    B. Hill, T. Roger, F.W. Vorhagen, ACM Trans. Graph. 16, 109 (1997)CrossRefGoogle Scholar
  31. 31.
    A.A. Christy, O.M. Kvalheim, R.A. Velapoldi, Vib. Spectrosc. 9, 19 (1995)CrossRefGoogle Scholar
  32. 32.
    M. Gorji Bandpay, F. Ameri, K. Ansari, S. Moradian, J. Coat. Technol. Res. (2018).  https://doi.org/10.1007/s11998-018-0056-5 Google Scholar
  33. 33.
    G. Shirane, A. Takeda, J. Phys. Soc. Jpn. 7, 1 (1952)CrossRefGoogle Scholar
  34. 34.
    E. Sakalauskas, B. Reuters, L.R. Khoshroo, H. Kalisch, M. Heuken, A. Vescan, M. Röppischer, C. Cobet, G. Gobsch, R. Goldhahn, J. Appl. Phys. 110, 013102 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Yeon Beom Jeong
    • 1
  • Sung Hwan Hong
    • 1
  • Jeong Tae Kim
    • 2
  • Hae Jin Park
    • 1
  • Young Seok Kim
    • 1
  • Hoo Dam Lee
    • 3
  • Jong Kook Lee
    • 3
  • Sang Chul Mun
    • 1
  • Yun Jung Hwang
    • 1
  • Kwang Heo
    • 1
  • Ki Buem Kim
    • 1
    Email author
  1. 1.Department of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoulRepublic of Korea
  2. 2.Erich Schmid Institute of Materials Science, Austrian Academy of SciencesLeobenAustria
  3. 3.Headquarter of Research and DevelopmentHyundai Motor Company Research Center16082Republic of Korea

Personalised recommendations