Metals and Materials International

, Volume 25, Issue 2, pp 313–323 | Cite as

Corrosion and Wear Characteristics of Electroless Ni–P, Ni–P–W and Composite Ni–P–W/Al2O3 Coatings on AZ91 Sheet

  • Selim Taşci
  • Reşat Can Özden
  • Mustafa AnikEmail author


Electroless Ni–P–W was coated on AZ91 sheets with various W contents and both the corrosion and wear resistance characteristics of these coatings were observed. The increase in W content resulted in a decrease in P content and an increase in the crystallinity of the electroless coatings. The corrosion resistance of the electroless coatings increased upon increase in W content of the electroless coatings up to approximately 5%. Above this content, however, the corrosion resistance tended to decrease due to the disturbed grain structure of the electroless coating. But both the surface hardness and wear resistance increased concurrently due to the positive contribution of W solid solution hardening. The applied heat treatment resulted in a decrease in the corrosion resistance due to the disappearance of the amorphous structure and increase in both the surface hardness and wear resistance due to the precipitation hardening. Al2O3 dispersion was better with the nonionic surfactant, as compared to the anionic and cationic surfactants. Composite coating reduced the corrosion resistance and increased the wear resistance of the electroless Ni–P–W coatings. The applied heat treatment was observed to have positive contribution to Ni–P–W coatings in getting the optimum corrosion and wear resistance combination.


Electroless coating Ni–P–W Corrosion resistance Wear rate Al2O3 particles 


  1. 1.
    N. Tsyntsaru, H. Cesiulis, M. Donten, J. Sorte, E. Pellicer, E.J. Podlaha-Murphy, Modern trends in tungsten alloys electrodeposition with iron group metals. Surf. Eng. Appl. Electrochem. 48(6), 491–520 (2012)CrossRefGoogle Scholar
  2. 2.
    E.J. Podlaha, D. Landolt, Induced codeposition: I. An experimental investigation of Ni-Mo alloys. J. Electrochem. Soc. 143(3), 885–892 (1996)CrossRefGoogle Scholar
  3. 3.
    E.J. Podlaha, D. Landolt, Induced codeposition: III. Molybdenum alloys with nickel, cobalt, and iron. J. Electrochem. Soc. 144(5), 1672–1680 (1997)CrossRefGoogle Scholar
  4. 4.
    O. Younes, E. Gileadi, Electroplating of high tungsten content Ni/W alloys. Electrochem. Solid State Lett. 3(12), 543–545 (2000)CrossRefGoogle Scholar
  5. 5.
    O. Younes, E. Gileadi, Electroplating of Ni/W alloys: I. Ammoniacal citrate baths. J. Electrochem. Soc. 149(2), C100–C111 (2002)CrossRefGoogle Scholar
  6. 6.
    O. Younes, L. Zhu, E. Gileadi, The anomalous codeposition of tungsten in the presence of nickel. Electrochim. Acta 48(18), 2551–2562 (2003)CrossRefGoogle Scholar
  7. 7.
    M.D. Obradovic, R.M. Stevanovic, A.R. Despic, Electrochemical deposition of Ni–W alloys from ammonia-citrate electrolyte. J. Electroanal. Chem. 552, 185–196 (2003)CrossRefGoogle Scholar
  8. 8.
    K.R. Sriraman, S.G.S. Raman, S.K. Seshadri, Synthesis and evaluation of hardness and sliding wear resistance of electrodeposited nanocrystalline Ni–W alloys. Mater. Sci. Eng. A 418(1–2), 303–311 (2006)CrossRefGoogle Scholar
  9. 9.
    A. Krolikowski, E. Plonska, A. Ostrowski, M. Donten, Z. Stojek, The electrochemistry of nanostructured Ni–W alloys. J. Solid State Electrochem. 13(2), 263–275 (2009)CrossRefGoogle Scholar
  10. 10.
    K.A. Kumar, G.P. Kalaignan, V.S. Muralidharan, Pulse electrodeposition and characterization of nano Ni–W alloy deposits. Appl. Surf. Sci. 259, 231–237 (2012)CrossRefGoogle Scholar
  11. 11.
    N. Du, M. Pritzker, Investigation of electroless plating of Ni–W–P alloy films. J. Appl. Electrochem. 33(11), 1001–1009 (2003)CrossRefGoogle Scholar
  12. 12.
    X.Y. Yuan, T. Xie, G.S. Wu, Y. Lin, G.W. Meng, L.D. Zhang, Fabrication of Ni–W–P nanowire arrays by electroless deposition and magnetic studies. Physica E 23(1), 75–80 (2004)CrossRefGoogle Scholar
  13. 13.
    J.N. Balaraju, S. Millath Jahan, C. Anandan, K.S. Rajam, Studies on electroless Ni–W–P and Ni–W–Cu–P alloy coatings using chloride based bath. Surf. Coat. Technol. 200(16), 4885–4890 (2006)CrossRefGoogle Scholar
  14. 14.
    X. Shu, Y. Wang, X. Lu, C. Liu, W. Gao, Parameter optimization for electroless Ni–W–P coating. Surf. Coat. Technol. 276, 195–201 (2015)CrossRefGoogle Scholar
  15. 15.
    J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys—a critical review. J. Alloys Compd. 336(1–2), 88–113 (2002)CrossRefGoogle Scholar
  16. 16.
    G.L. Makar, J. Kruger, Stress corrosion cracking of rapidly solidified magnesium-aluminum alloys. Int. Mater. Rev. 38(8), 138–153 (1993)CrossRefGoogle Scholar
  17. 17.
    G. Song, A. Atrens, Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1(1), 11–33 (1999)CrossRefGoogle Scholar
  18. 18.
    M. Anik, P. Avci, A. Tanverdi, I. Celikyurek, B. Baksan, R. Gurler, Effect of the eutectic phase on the anodic behavior of alloy AZ91. Mater. Des. 27(5), 347–355 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Anik, G. Çelikten, Analysis of the electrochemical reaction behavior of alloy AZ91 by EIS technique in H3PO4/KOH buffered K2SO4 solutions. Corros. Sci. 19(4), 1878–1894 (2007)CrossRefGoogle Scholar
  20. 20.
    M. Anik, E. Körpe, Effect of alloy microstructure on electroless NiP deposition behavior on alloy AZ91. Surf. Coat. Technol. 201(8), 4702–4710 (2007)CrossRefGoogle Scholar
  21. 21.
    M. Anik, E. Körpe, E. Şen, Effect of coating bath composition on the properties of electroless nickel–boron films. Surf. Coat. Technol. 202(9), 1718–1727 (2008)CrossRefGoogle Scholar
  22. 22.
    W.X. Zhang, N. Huang, J.G. He, Z.H. Jiang, Q. Jiang, J.S. Lian, Electroless deposition of Ni–W–P coating on AZ91D magnesium alloy. Appl. Surf. Sci. 253(11), 5116–5121 (2007)CrossRefGoogle Scholar
  23. 23.
    X.M. Chen, G.Y. Li, J.S. Lian, Deposition of electroless Ni–P/Ni–W–P duplex coatings on AZ91D magnesium alloy. Trans. Nonferrous Met. Soc. China 18(Supp. 1), 323–328 (2008)CrossRefGoogle Scholar
  24. 24.
    V.E. Selvi, P. Chatterji, S. Subramanian, J.N. Balaraju, Autocatalytic duplex Ni–P/Ni–W–P coatings on AZ31B magnesium alloy. Surf. Coat. Technol. 240, 103–109 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Armyanov, E. Valova, D. Tatchev, J. Georgieva, Electroless deposited ternary alloys: third element chemical state, localization and influence on the properties. A short review. Trans. Inst. Met. Finish 96(1), 12–19 (2018)CrossRefGoogle Scholar
  26. 26.
    Z. Adigüzel, M. Anik, Dissolution behavior of electrodeposited Ni–W alloys. Prot. Met. Phys. Chem. 54(2), 316–324 (2018)CrossRefGoogle Scholar
  27. 27.
    R.B. Diegle, N.R. Sorensen, C.R. Clayton, M.A. Helfand, Y.C. Yu, An XPS investigation into the passivity of an amorphous Ni-20P alloy. J. Electrochem. Soc. 135(5), 1085–1092 (1988)CrossRefGoogle Scholar
  28. 28.
    J. Sudagar, J. Lian, W. Sha, Electroless nickel, alloy, composite and nano coatings—a critical review. J. Alloys Compd. 571, 183–204 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Amell, C. Muller, M. Sarret, Influence of fluorosurfactants on the codeposition of ceramic nanocomposites and the morphology of electroless NiP coatings. Surf. Coat. Technol. 205(2), 356–362 (2010)CrossRefGoogle Scholar
  30. 30.
    A.S. Hamdy, M.A. Shoeib, H. Hady, O.F.A. Salam, Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution. Surf. Coat. Technol. 202(1), 162–171 (2007)CrossRefGoogle Scholar
  31. 31.
    A.S. Hamdy, M.A. Shoeib, H. Hady, O.F.A. Salam, Electroless deposition of ternary Ni–P alloy coatings containing tungsten or nano-scattered alumina composite on steel. J. Appl. Electrochem. 3(38), 385–394 (2008)CrossRefGoogle Scholar
  32. 32.
    J.N. Balaraju, K.S. Rajam, Electroless ternary Ni–W–P alloys containing micron size Al2O3 particles. Surf. Coat. Technol. 205(2), 575–581 (2010)CrossRefGoogle Scholar
  33. 33.
    J. Novakovic, P. Vassiliou, K. Samara, T. Argyropoulos, Electroless NiP–TiO2 composite coatings: their production and properties. Surf. Coat. Technol. 201(3–4), 895–901 (2006)CrossRefGoogle Scholar
  34. 34.
    A.A. Zuleta, O.A. Galvis, J.G. Castaño, F. Echeverría, F.J. Pérez-Trujillo, Preparation and characterization of electroless Ni–P–Fe3O4 composite coatings and evaluation of its high temperature oxidation behavior. Surf. Coat. Technol. 203(23), 3569–3578 (2009)CrossRefGoogle Scholar
  35. 35.
    S. Zhang, K. Han, L. Chen, The effect of SiC particles added in electroless Ni–P plating solution on the properties of composite coatings. Surf. Coat. Technol. 202(12), 2807–2812 (2008)CrossRefGoogle Scholar
  36. 36.
    A.A. Kaya, O. Duygulu, S. Ucuncuoglu, G. Oktay, D.S. Temur, O. Yucel, Production of 150 cm wide AZ31 magnesium sheet by twin roll casting. Trans. Nonferrous Met. Soc. China 18(Supp. 1), 185–188 (2008)CrossRefGoogle Scholar
  37. 37.
    J.N. Belaraju, N.T. Manikandanath, V.K. Grips, Phase transformation behavior of nanocrystalline Ni–W–P alloys containing various W and P contents. Surf. Coat. Technol. 206(10), 2682–2689 (2012)CrossRefGoogle Scholar
  38. 38.
    K. Krishnan, S. John, K. Srinivasan, An overall aspect of electroless Ni–P depositions—a review article. Mater. Trans. A 37(6), 1917–1926 (2006)CrossRefGoogle Scholar
  39. 39.
    P.L. Cavallotti, L. Magagnin, C. Cavallotti, Influence of added elements on autocatalytic chemical deposition electroless NiP. Electrochim. Acta 114, 805–812 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Anik, Anodic behavior of tungsten in H3PO4-K2SO4-H2SO4/KOH solutions. Turk. J. Chem. 26, 915–924 (2002)Google Scholar
  41. 41.
    M. Anik, Effect of concentration gradient on the anodic behavior of tungsten. Corros. Sci. 48(12), 4158–4173 (2006)CrossRefGoogle Scholar
  42. 42.
    M. Anik, pH-dependent anodic reaction behavior of tungsten in acidic phosphate solutions. Electrochim. Acta 54(15), 3943–3951 (2009)CrossRefGoogle Scholar
  43. 43.
    A. AlZahrani, Y. Alhamed, L. Petrov, S. Armyanov, E. Valova, J. Georgieva, J. Dille, Mechanical and corrosion behavior of amorphous and crystalline electroless Ni–W–P coatings. J. Solid State Electrochem. 18(7), 1951–1961 (2014)CrossRefGoogle Scholar
  44. 44.
    M. Palaniappa, S.K. Seshadri, Friction and wear behavior of electroless Ni–P and Ni–W–P alloy coatings. Wear 265(5–6), 735–740 (2008)CrossRefGoogle Scholar
  45. 45.
    Z. Guo, K.G. Keong, W. Sha, Crystallization and phase transformation behavior of electroless nickel phosphorus platings during continuous heating. J. Alloys Compd. 358(1–2), 112–119 (2003)CrossRefGoogle Scholar
  46. 46.
    J.N. Balaraju, T.S.N. Sankara Narayanan, S.K. Seshadri, Structure and phase transformation behavior of electroless Ni–P composite coatings. Mater. Res. Bull. 41(4), 847–860 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Selim Taşci
    • 1
  • Reşat Can Özden
    • 1
  • Mustafa Anik
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringEskisehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations