Advertisement

Microstructure and Mechanical Features of Electron Beam Welded Dissimilar Titanium Alloys: Ti–10V–2Fe–3Al and Ti–6Al–4V

  • Muhammad Iman Utama
  • Nokeun Park
  • Eung Ryul Baek
Article
  • 11 Downloads

Abstract

We studied the relationship between phase transformation and mechanical property of electron beam welded dissimilar titanium (Ti) alloy between Ti–10V–2Fe–3Al (Ti1023) and Ti–6Al–4V (Ti64). A new chemical composition in the fusion zone generated a moderately high beta (β) phase stability which made the precipitation of acicular alpha double-prime martensite, resulting in enhanced hardness. Fracture took place during tensile test in the heat affected zone (HAZ) of Ti1023 because secondary alpha (αs) phase transformed into β during welding, resulting in a loss of strength during welding. Post weld heat treatment (PWHT) successfully regained αs and improved the mechanical properties in Ti1023 HAZ, resulting in preventing failure at Ti1023 HAZ but occurring at Ti64 base during tensile test. A development of tri-modal structure, consisting of a globular and lamellar structure of primary alpha and fine αs precipitation, in both Ti64 base and Ti64 HAZ occurred after PWHT. The tensile property was improved after PWHT showing tensile strength with 1065 MPa and 9% elongation.

Keywords

Ti–10V–2Fe–3Al Ti–6Al–4V Electron beam welding Post weld heat treatment Mechanical property 

Notes

Acknowledgements

This work was supported by the Korea Evaluation Institute of Industrial Technology (KEIT) Granted financial resource from Ministry of Trade, Industry, and Energy, Republic of Korea (No. 10062485) and IONS Co. Ltd.

References

  1. 1.
    J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, J.C. Fanning, State of the art in beta titanium alloys for airframe applications. JOM 67, 1281–1303 (2015).  https://doi.org/10.1007/s11837-015-1442-4 CrossRefGoogle Scholar
  2. 2.
    J.W. Lu, Y.Q. Zhao, P. Ge, H.Z. Niu, Y.S. Zhang, W. Zhang, P.X. Zhang, Microstructure and mechanical properties of new high strength beta-titanium alloy Ti-1300. Mater. Sci. Eng. A 621, 182–189 (2015).  https://doi.org/10.1016/j.msea.2014.10.072 CrossRefGoogle Scholar
  3. 3.
    D. Luquiau, X. Feaugas, M. Clavel, Cyclic softening of the Ti–10V–2Fe–3Al titanium alloy. Mater. Sci. Eng. A 224, 146–156 (1997).  https://doi.org/10.1016/S0921-5093(96)10531-1 CrossRefGoogle Scholar
  4. 4.
    D.G. Robertson, H.B. McShane, Isothermal hot deformation behaviour of metastable β titanium alloy Ti–10V–2Fe–3AI. Mater. Sci. Technol. 13, 575–583 (1997).  https://doi.org/10.1179/mst.1997.13.7.575 CrossRefGoogle Scholar
  5. 5.
    B.H. Choe, H.S. Jang, B.K. Lee, K.R. Lim, Y.S. Na, Y.T. Hyun, S.E. Kim, Y.U. Kim, C.S. Park, Metastable phase transformation of beta titanium alloys by slip mechanism. Korean J. Met. Mater. 55, 453–459 (2017).  https://doi.org/10.3365/KJMM.2017.55.7.453 CrossRefGoogle Scholar
  6. 6.
    D.H. Won, T.S. Bae, S. Ohkawa, F. Watari, The influence of output current on the tensile strength of laser-welded titanium joints. Met. Mater. Int. 9, 493–496 (2003).  https://doi.org/10.1007/BF03027157 CrossRefGoogle Scholar
  7. 7.
    H. Yilmazer, M. Niinomi, K. Cho, M. Nakai, J. Hieda, S. Sato, Y. Todaka, Microstructural evolution of precipitation-hardened β-type titanium alloy through high-pressure torsion. Acta Mater. 80, 172–182 (2014).  https://doi.org/10.1016/j.actamat.2014.07.041 CrossRefGoogle Scholar
  8. 8.
    W. Chen, Z. Song, L. Xiao, Q. Sun, J. Sun, P. Ge, Effect of prestrain on microstructure and mechanical behavior of aged Ti–10V–2Fe–3Al alloy. J. Mater. Res. 24, 2899–2908 (2009).  https://doi.org/10.1557/jmr.2009.0332 CrossRefGoogle Scholar
  9. 9.
    G.T. Terlinde, T.W. Duerig, J.C. Williams, The effect of heat treatment on microstructure and tensile properties of Ti–10V–2Fe–3A, titan. “80 Sci. Technol. - Proc. 4th Int”l Conf. Titan. (1980) , pp. 1571–1581Google Scholar
  10. 10.
    G.T. Terlinde, T.W. Duerig, J.C. Williams, Microstructure, tensile deformation, and fracture in aged Ti–10V–2Fe–3Al. Metall. Trans. A 14A, 2101–2115 (1983)CrossRefGoogle Scholar
  11. 11.
    Y. Ren, F. Wang, S. Wang, C. Tan, X. Yu, J. Jiang, H. Cai, Mechanical response and effects of β-to-α” phase transformation on the strengthening of Ti–10V–2Fe–3Al during one-dimensional shock loading. Mater. Sci. Eng. A 562, 137–143 (2013).  https://doi.org/10.1016/j.msea.2012.10.098 CrossRefGoogle Scholar
  12. 12.
    Y. Zheng, R.E.A. Williams, S. Nag, R. Banerjee, H.L. Fraser, D. Banerjee, The effect of alloy composition on instabilities in the β phase of titanium alloys. Scr. Mater. 116, 49–52 (2016).  https://doi.org/10.1016/j.scriptamat.2016.01.024 CrossRefGoogle Scholar
  13. 13.
    D.L. OuYang, M.W. Fu, S.Q. Lu, Study on the dynamic recrystallization behavior of Ti-alloy Ti–10V–2Fe–3V in β processing via experiment and simulation. Mater. Sci. Eng. A 619, 26–34 (2014).  https://doi.org/10.1016/j.msea.2014.09.067 CrossRefGoogle Scholar
  14. 14.
    C. Leyens, M. Peters, J.W. & Sons., W.I. (Online service), Titanium and titanium alloys : fundamentals and applications, (2003). http://www.123library.org/book_details/?id=29130
  15. 15.
    M.S. Wȩglowski, S. Błacha, A. Phillips, Electron beam welding—techniques and trends—review. Vacuum 130, 72–92 (2016).  https://doi.org/10.1016/j.vacuum.2016.05.004 CrossRefGoogle Scholar
  16. 16.
    V. Esfahani Yeganeh, P. Li, Effect of beam offset on microstructure and mechanical properties of dissimilar electron beam welded high temperature titanium alloys. Mater. Des. 124, 78–86 (2017).  https://doi.org/10.1016/j.matdes.2017.03.056 CrossRefGoogle Scholar
  17. 17.
    S.Q. Wang, W.Y. Li, Y. Zhou, X. Li, D.L. Chen, Tensile and fatigue behavior of electron beam welded dissimilar joints of Ti–6Al–4V and IMI834 titanium alloys. Mater. Sci. Eng. A 649, 146–152 (2016).  https://doi.org/10.1016/j.msea.2015.09.107 CrossRefGoogle Scholar
  18. 18.
    S.Q. Wang, W.Y. Li, K. Jing, X.Y. Zhang, D.L. Chen, Microstructural evolution and mechanical properties of electron beam welded dissimilar titanium alloy joints. Mater. Sci. Eng. A 697, 224–232 (2017).  https://doi.org/10.1016/j.msea.2017.05.028 CrossRefGoogle Scholar
  19. 19.
    B.H. Tao, Q. Li, Y.H. Zhang, T.C. Zhang, Y. Liu, Effects of post-weld heat treatment on fracture toughness of linear friction welded joint for dissimilar titanium alloys. Mater. Sci. Eng. A 634, 141–146 (2015).  https://doi.org/10.1016/j.msea.2015.03.003 CrossRefGoogle Scholar
  20. 20.
    C.-Y. Kang, S.-H. Jeong, Effects of PWHT on weld metal properties of YS 460 MPa steels for ship and offshore Structures. J. Weld. Join. 32, 75–79 (2014).  https://doi.org/10.5781/JWJ.2014.32.4.75 CrossRefGoogle Scholar
  21. 21.
    Y. Byun, S. Lee, C. Park, J. Yeom, N. Kang, J. Hong, The effects of PWHT on tensile properties and microstructures for laser welds of Ti–6Al–4V alloys. J. Weld. Join. 35, 1–5 (2017).  https://doi.org/10.5781/JWJ.2017.35.4.1 CrossRefGoogle Scholar
  22. 22.
    Research trend of laser welding and weldability of high speed dissimilar laser lap welding for titanium. J. Weld. Join. 35 (2017) 16–22.  https://doi.org/10.3345/kjp.2017.35.4.16
  23. 23.
    A.S. for Metals, Metals Handbook. 9th Ed. Vol. 3. Properties and Selection Stainless Steels, Tool Materials & Special-purpose Metal, ASM, 1980. https://books.google.co.kr/books?id=vJTncQAACAAJ
  24. 24.
    G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, 1993. https://books.google.co.kr/books?id=x3rToHWOcD8C
  25. 25.
    J.M. Holt, H. Mindlin, C.Y. Ho, P. University., C. for I. and N.D.A. and Synthesis., Structural alloys handbook, CINDAS/Purdue University, West Lafayette, Ind., 1997Google Scholar
  26. 26.
    A.S.M.I.H. Committee, Properties and Selection: Nonferrous Alloys and Special- Purpose Materials, ASM International, 1990. https://books.google.co.kr/books?id=wxA7AQAAIAAJ
  27. 27.
    V.N. Moiseev, E.V. Polyak, A.Y. Sokolova, Martensite strengthening of titanium alloys. Met. Sci. Heat Treat. 17, 687–691 (1975).  https://doi.org/10.1007/BF00664318 CrossRefGoogle Scholar
  28. 28.
    A. Bhattacharjee, Effect of β grain size on stress induced martensitic transformation in β solution treated Ti–10V–2Fe–3Al alloy. Scr. Mater. 53, 195–200 (2005).  https://doi.org/10.1016/j.scriptamat.2005.03.039 CrossRefGoogle Scholar
  29. 29.
    Y. Sugiura, S. Hamai, Effect of Heat Treatment on Hardness and Electrical Resistivity of Ti–10V–2Fe–3Al Alloy. Tetsu-to-Hagane 84, 458–463 (1998).  https://doi.org/10.2355/tetsutohagane1955.84.6_458 CrossRefGoogle Scholar
  30. 30.
    P. Castany, F. Pettinari-Sturmel, J. Douin, A. Coujou, In situ transmission electron microscopy deformation of the titanium alloy Ti–6Al–4V: interface behaviour. Mater. Sci. Eng. A 483–484, 719–722 (2008).  https://doi.org/10.1016/j.msea.2006.10.183 CrossRefGoogle Scholar
  31. 31.
    I. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals (Elsevier Science, 2005). https://books.google.co.kr/books?id=td0jD4it63cC
  32. 32.
    S.A. Abbasi, P. Feng, Y. Ma, J. Zhang, D. Yu, Z. Wu, Influence of microstructure and hardness on machinability of heat-treated titanium alloy Ti–6Al–4V in end milling with polycrystalline diamond tools. Int. J. Adv. Manuf. Technol. 86, 1393–1405 (2016).  https://doi.org/10.1007/s00170-015-8245-1 CrossRefGoogle Scholar
  33. 33.
    Y.-W. Sui, B.-S. Li, A.-H. Liu, N. Hai, J.-J. Guo, H.-Z. Fu, Microstructures and hardness of Ti–6Al–4V alloy staging castings under centrifugal field. Trans. Nonferrous Met. Soc. China 18, 291–296 (2008).  https://doi.org/10.1016/s1003-6326(08)60051-5 CrossRefGoogle Scholar
  34. 34.
    H. Matsumoto, H. Yoneda, K. Sato, S. Kurosu, E. Maire, D. Fabregue, T.J. Konno, A. Chiba, Room-temperature ductility of Ti–6Al–4V alloy with α′ martensite microstructure. Mater. Sci. Eng. A 528, 1512–1520 (2011).  https://doi.org/10.1016/j.msea.2010.10.070 CrossRefGoogle Scholar
  35. 35.
    R. Hosseini, M. Morakabati, S.M. Abbasi, A. Hajari, Development of a trimodal microstructure with superior combined strength, ductility and creep-rupture properties in a near alpha titanium alloy. Mater. Sci. Eng. A 696, 155–165 (2017).  https://doi.org/10.1016/j.msea.2017.04.068 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringYeungnam UniversityGyeongsanRepublic of Korea

Personalised recommendations