Metals and Materials International

, Volume 25, Issue 2, pp 528–538 | Cite as

Effects of Addition of Si and Sb on the Microstructure and Thermoelectric Properties of GeTe

  • Samyoung Kim
  • Ho Seong LeeEmail author


The effects of the addition of Si and Sb on the microstructure and thermoelectric properties of GeTe were investigated in this study. Pure GeTe showed a typical herringbone structure that consisted of regularly aligned domains with alternating bright and dark contrast areas. When Sb atoms were added to the GeTe, a clean herringbone structure was not formed. Instead, many sharp lines that are likely narrow domains were observed, and their formation can be ascribed to the cubic stabilizing nature of Sb in GeTe. The co-addition of Si and Sb to GeTe resulted in a breakdown of the herringbone structure and formation of SiGe and Si precipitates. Even though Si and Ge can form a complete solid solution, the solubility of Si in GeTe remained low. The addition of Sb to GeTe significantly reduced the electrical conductivity due to the aliovalent donor nature of Sb. Its thermal conductivity was also very low due to the mass fluctuation in the solid solution and narrow domain structure. Therefore, the best figure-of-merit (ZT) of 0.67 at 570 K was obtained. However, Ge1−x−ySbxSiyTe compounds with both Si and Sb addition showed a relatively low ZT value.


GeTe Herringbone structure Thermoelectric Microstructure 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Number 2015R1D1A1A02062093). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A41A1022260). This work was supported by a Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant from the Ministry of Trade, Industry and Energy, Republic of Korea (No. 20162000000910).


  1. 1.
    G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)CrossRefGoogle Scholar
  2. 2.
    S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, S.W. Kim, Science 348, 109 (2015)CrossRefGoogle Scholar
  3. 3.
    C.-C. Lin, R. Lydia, J.H. Yun, H.S. Lee, J.S. Rhyee, Chem. Mater. 29, 5344 (2017)CrossRefGoogle Scholar
  4. 4.
    P. Pichanusakorn, P. Bandaru, Mater. Sci. Eng. R 67, 19 (2010)CrossRefGoogle Scholar
  5. 5.
    A.S. Tazebay, S.-I. Yi, J.K. Lee, H. Kim, J.-H. Bahk, S.L. Kim, S.-D. Park, H.S. Lee, A. Shaouri, C. Yu, A.C.S. Appl, Mater. Interfaces 8, 7003 (2016)CrossRefGoogle Scholar
  6. 6.
    J.I. Jang, J.E. Lee, B.-S. Kim, S.-D. Park, H.S. Lee, RSC Adv. 7, 21671 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Bae, S. Lee, H.-S. Sohn, H.S. Lee, Met. Mater. Int. 23, 1056 (2017)CrossRefGoogle Scholar
  8. 8.
    W.-J. Jung, I.-H. Kim, Met. Mater. Int. 24, 415 (2018)CrossRefGoogle Scholar
  9. 9.
    J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009)CrossRefGoogle Scholar
  10. 10.
    D.K. Aswal, R. Basu, A. Singh, Energy Convers. Manag. 114, 50 (2016)CrossRefGoogle Scholar
  11. 11.
    D.L. Medlin, G.J. Snyder, Curr. Opin. Colloid Interface Sci. 14, 226 (2009)CrossRefGoogle Scholar
  12. 12.
    H. Mun, S.-M. Choi, K.H. Lee, S.W. Kim, Chemsuschem 8, 2312 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Lan, B. Poudel, Y. Ma, D. Wang, M.S. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 9, 1419 (2009)CrossRefGoogle Scholar
  14. 14.
    W. Kim, J. Mater. Chem. C 3, 10336 (2015)CrossRefGoogle Scholar
  15. 15.
    J.R. Szczech, J.M. Higgins, S. Jin, J. Mater. Chem. 21, 4037 (2011)CrossRefGoogle Scholar
  16. 16.
    K.H. Lee, J.-Y. Kim, S.-M. Choi, J. Korean Ceram. Soc. 52, 1 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Tan, L.-D. Zhao, M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016)CrossRefGoogle Scholar
  18. 18.
    J.P. Heremans, B. Wiendlocha, A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012)CrossRefGoogle Scholar
  19. 19.
    G. Ding, J. Li, G. Gao, RSC Adv. 5, 91974 (2015)CrossRefGoogle Scholar
  20. 20.
    K. Nielsch, J. Bachmann, J. Kimling, H. Bottner, Adv. Energy Mater. 1, 713 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Perumat, S. Roychowdhury, K. Biswas, J. Mater. Chem. C 4, 7520 (2016)CrossRefGoogle Scholar
  22. 22.
    E.M. Levin, B.A. Cook, J.L. Harringa, S.L. Bud’ko, R. Venkatasubramanian, K. Schmidt-Rohr, Adv. Funct. Mater. 21, 441 (2011)CrossRefGoogle Scholar
  23. 23.
    B.A. Cook, M.J. Kramer, X. Wei, J.L. Harringa, E.M. Levin, J. Appl. Phys. 101, 053715 (2007)CrossRefGoogle Scholar
  24. 24.
    T. Schroder, T. Rosenthal, N. Giesbrecht, M. Nentwig, S. Maier, H. Wang, G.J. Snyder, O. Oeckler, Inorg. Chem. 53, 7722 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Kumar, P.A. Vermeulen, B.J. Kooi, J. Rao, L. van Eijck, S. Schwarzmuller, O. Oeckler, G. Blake, Inorg. Chem. 56, 15091 (2017)CrossRefGoogle Scholar
  26. 26.
    E.M. Levin, S.L. Bud’ko, K. Schmidt-Rohr, Adv. Funct. Mater. 22, 2766 (2012)CrossRefGoogle Scholar
  27. 27.
    J.K. Lee, M.W. Oh, B.S. Kim, B.K. Min, H.W. Lee, S.D. Park, Electron. Mater. Lett. 10, 813 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Perumal, S. Roychowdhury, D.S. Negi, R. Datta, K. Biswas, Chem. Mater. 27, 7171 (2015)CrossRefGoogle Scholar
  29. 29.
    J.B. Williams, D.T. Morelli, J. Mater. Chem. C 4, 10011 (2016)CrossRefGoogle Scholar
  30. 30.
    J.B. Williams, D.T. Morelli, J. Eletron. Mater. 46, 2652 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Perumal, S. Roychowdhury, K. Biswas, Inorg. Chem. Front. 3, 125 (2016)CrossRefGoogle Scholar
  32. 32.
    D. Wu, L.-D. Zhao, S. Hao, Q. Jiang, F. Zheng, J.W. Doak, H. Wu, H. Chi, Y. Gelbstein, C. Uher, C. Wolverton, M. Kanatzidis, J. He, J. Am. Chem. Soc. 136, 11412 (2014)CrossRefGoogle Scholar
  33. 33.
    J. Li, X. Zhang, S. Lin, Z. Chen, Y. Pei, Chem. Mater. 29, 605 (2017)CrossRefGoogle Scholar
  34. 34.
    H.S. Lee, B.-S. Kim, C.-W. Cho, M.-W. Oh, B.-K. Min, S.-D. Park, H.-W. Lee, Acta Mater. 91, 83 (2015)CrossRefGoogle Scholar
  35. 35.
    Y. Gelbstein, B. Dado, O. Ben-Yehuda, Y. Sadia, Z. Dashevsky, M.P. Dariel, Chem. Mater. 22, 1054 (2010)CrossRefGoogle Scholar
  36. 36.
    B. Srinivasan, R. Gautier, F. Gucci, B. Fontaine, J.-F. Halet, F. Chevire, C. Boussard-Pledel, M.J. Reece, B. Bureau, J. Phys. Chem. C 122, 227 (2018)CrossRefGoogle Scholar
  37. 37.
    A.A. Babarenko, T.T. Tsu, E.M. Savitskii, ASM Alloy Phase Diagr. Center (2007). Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations