Advertisement

Metals and Materials International

, Volume 25, Issue 1, pp 9–17 | Cite as

Influence of Initial Pearlite Morphology on the Microstructure Evolution During Heat Treatment of 1.0C–1.5Cr Steel

  • Zhen-Xing Li
  • Chang-Sheng Li
  • Seong-Hoon Kim
  • Dong-Woo SuhEmail author
Article
  • 114 Downloads

Abstract

Effect of initial pearlite morphology on the microstructure evolution during spheroidization annealing and subsequent hardening treatment was studied in hot-rolled 1.0C–1.5Cr bearing steel. The ferrite-to-austenite transformation in spheroidization annealing can be accelerated by refining the pearlite interlamellar spacing and pearlite colony size. Decreasing interlamellar spacing is also beneficial to increasing the number density of undissolved cementite, leading to the refining of final spheroidized cementite. During the re-austenitizing process of hardening treatment, the smaller initial spheroidized cementite leads to faster cementite dissolution and finer undissolved cementite particles. The prior austenite grain size after hardening treatment can also be decreased by refining the initial pearlite microstructure.

Keywords

Bearing steel Spheroidization annealing Quenching Pearlite Undissolved cementite 

Notes

Acknowledgements

This work was supported by the National High Technology Research and Development Program (2012AA03A503), Fundamental Research Funds for the Central Universities (N130607002), Research Fund for the Doctoral Program of Higher Education of China (20130042110040) and China Scholarship Council.

References

  1. 1.
    H.K.D.H. Bhadeshia, Prog. Mater Sci. 57, 268 (2012)CrossRefGoogle Scholar
  2. 2.
    K.H. Kim, S.D. Park, J.H. Kim, C.M. Bae, Met. Mater. Int. 18, 917 (2012)CrossRefGoogle Scholar
  3. 3.
    C.A. Stickels, Metall. Trans. 5, 865 (1974)CrossRefGoogle Scholar
  4. 4.
    F.C. Akbasoglu, D.V. Edmonds, Metall. Trans. A 21, 889 (1990)CrossRefGoogle Scholar
  5. 5.
    Z.X. Li, C.S. Li, J.Y. Ren, B.Z. Li, J. Zhang, Y.Q. Ma, Mater. Sci. Eng. A 674, 262 (2016)CrossRefGoogle Scholar
  6. 6.
    J.D. Verhoeven, E.D. Gibson, Metall. Mater. Trans. A 29, 1181 (1998)CrossRefGoogle Scholar
  7. 7.
    Z.X. Li, C.S. Li, J. Zhang, B. Qiao, Z.Z. Li, Metall. Mater. Trans. A 46, 3220 (2015)CrossRefGoogle Scholar
  8. 8.
    J.D. Verhoeven, Metall. Mater. Trans. A 31, 2431 (2000)CrossRefGoogle Scholar
  9. 9.
    A.S. Pandit, H.K.D.H. Bhadeshia, Proc. R. Soc. A 468, 2767 (2012)CrossRefGoogle Scholar
  10. 10.
    Z.X. Li, C.S. Li, J. Zhang, B.Z. Li, X.D. Pang, Metall. Mater. Trans. A 47, 3607 (2016)CrossRefGoogle Scholar
  11. 11.
    D. Shtansky, K. Nakai, Y. Ohmori, Acta Mater. 47, 2619 (1999)CrossRefGoogle Scholar
  12. 12.
    G.H. Zhang, J.Y. Chae, K.H. Kim, D.W. Suh, Mater. Character 81, 56 (2013)CrossRefGoogle Scholar
  13. 13.
    H.L. Yi, Z.Y. Hou, Y.B. Xu, D. Wu, G.D. Wang, Scr. Mater. 67, 645 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Yahyaoui, H. Sidhom, C. Braham, A. Baczmanski, Mater. Des. 55, 888 (2014)CrossRefGoogle Scholar
  15. 15.
    A. Roósz, Z. Gácsi, E.G. Fuchs, Acta Metall. 31, 509 (1983)CrossRefGoogle Scholar
  16. 16.
    C. García de Andrés, F.G. Caballero, C. Capdevila, H.K.D.H. Bhadeshia, Scr. Mater. 39, 791 (1998)CrossRefGoogle Scholar
  17. 17.
    W. Song, P.P. Choi, G. Inden, U. Prahl, D. Raabe, W. Bleck, Metall. Mater. Trans. A 45, 595 (2014)CrossRefGoogle Scholar
  18. 18.
    H. Hwang, B.C. De Cooman, Steel Res. Int. 87, 112 (2016)CrossRefGoogle Scholar
  19. 19.
    S.J. Lee, K.D. Clarke, Metall. Mater. Trans. A 41, 3027 (2010)CrossRefGoogle Scholar
  20. 20.
    D.W. Suh, C.S. Oh, S.J. Kim, Met. Mater. Int. 14, 275 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer, S. van der Zwaag, J.H. Root, N.B. Konyer, Scr. Metall. Mater. 29, 1011 (1993)CrossRefGoogle Scholar
  22. 22.
    D.W. Suh, C.S. Oh, H.N. Han, S.J. Kim, Acta Mater. 55, 2659 (2007)CrossRefGoogle Scholar
  23. 23.
    J.Y. Chae, J.H. Jang, G. Zhang, K.H. Kim, J.S. Lee, H.K.D.H. Bhadeshia, D.W. Suh, Scr. Mater. 65, 245 (2011)CrossRefGoogle Scholar
  24. 24.
    Z. Li, G. Miyamoto, Z. Yang, T. Furuhara, Scr. Mater. 60, 485 (2009)CrossRefGoogle Scholar
  25. 25.
    K.T. Park, S.K. Cho, J.K. Choi, Scr. Mater. 37, 661 (1997)CrossRefGoogle Scholar
  26. 26.
    J. Zhao, T.S. Wang, B. Lv, F.C. Zhang, Mater. Sci. Eng. A 628, 327 (2015)CrossRefGoogle Scholar
  27. 27.
    K.S. Park, S.J. Cho, K.Y. Lee, G.S. Kim, C.S. Lee, Int. J. Fatigue 29, 1863 (2007)CrossRefGoogle Scholar
  28. 28.
    H. Li, H. Zhang, Z.F. Lv, Z.F. Zhu, J. Phase Equilib. Diff. 38, 543 (2017)CrossRefGoogle Scholar
  29. 29.
    Z.D. Li, G. Miyamoto, Z.G. Yang, T. Furuhara, Metall. Mater. Trans. A 42, 1586 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Zhen-Xing Li
    • 1
    • 2
  • Chang-Sheng Li
    • 1
  • Seong-Hoon Kim
    • 2
  • Dong-Woo Suh
    • 2
    Email author
  1. 1.State Key Lab of Rolling and AutomationNortheastern UniversityShenyangPeople’s Republic of China
  2. 2.Graduate Institute of Ferrous Technology (GIFT)POSTECHPohangRepublic of Korea

Personalised recommendations