Advertisement

Metals and Materials International

, Volume 25, Issue 1, pp 83–93 | Cite as

Influence of Porosity on Mechanical Behavior of Porous Cu Fabricated via De-Alloying of Cu–Fe Alloy

  • Lijie Zou
  • Fei ChenEmail author
  • Hao Wang
  • Qiang Shen
  • Enrique J. Lavernia
  • Lianmeng Zhang
Article
  • 117 Downloads

Abstract

We report on a study of the mechanical behavior of porous Cu containing micron-sized pores and fabricated by de-alloying of a Cu–Fe precursor alloy. Our results show that the minimum volume fraction of pores that can be obtained by using an approach that involves de-alloying of a Cu–Fe precursor alloy is approximately 40 vol%. Moreover, the average pore size formed by de-alloying Cu–Fe of varying compositions is in the range of 1.5–4.0 μm. Our mechanical behavior results reveal that the yield stress increases from 3.9 to 58.6 MPa as the volume fraction of porosity decreases from 78.9% to 39.3%. Moreover, our data shows that the influence of porosity on the relative yield stress and relative Young’s modulus conforms to the scaling equations of Gibson and Ashby as formulated for open-cell porous metals. The pore cell characteristics and deformation modes of porous Cu produced by de-alloying Cu–Fe alloys were discussed in the context of the observed fluctuations in the value of the constants C and n in the Gibson-Ashby scaling equation. The evolution of microstructure during compressive deformation of porous Cu was studied and the results reveal an increase in the fraction of low-angle grain boundaries, an increase in the number of twins and a decrease in the average grain size with increasing strain from 0% to 70%.

Keywords

Micro-sized porous Cu Mechanical properties Relative density Microstructural evolution 

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51472188, and 51521001), Joint Fund (Grant No. 6141A02022223), Natural Research Funds of Hubei Province (No. 2016CFB583), Fundamental Research Funds for the Central Universities in China, State Key Laboratory of Advanced Electromagnetic Engineering and Technology (Huazhong University of Science and Technology), National Key Research and Development Program of China (No. 2017YFB0310400) and the “111” project (No. B13035).

References

  1. 1.
    Q.Q. Kong, L.X. Lian, Y. Liu, J. Zhang, Fabrication and compression properties of bulk hierarchical nanoporous copper with fine ligament. Mater. Lett. 127, 59–62 (2014)CrossRefGoogle Scholar
  2. 2.
    C. Körner, R.F. Singer, Review: processing of metal foams challenges and opportunities. Adv. Eng. Mater. 2(4), 159–165 (2000)CrossRefGoogle Scholar
  3. 3.
    J. Banhart, Review: manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater Sci. 46, 559–632 (2001)CrossRefGoogle Scholar
  4. 4.
    Z. Dan, F. Qin, T. Wada, S. Yamaura, G. Xie, Y. Sugawara, I. Muto, A. Makino, N. Hara, Nanoporous palladium fabricated from an amorphousPd42.5Cu30Ni7.5P20precursor and its ethanol electro-oxidation performance. Electrochim. Acta 108, 512–519 (2013)CrossRefGoogle Scholar
  5. 5.
    C.Y. Zhao, Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat. Mass. Trans. 55, 3618–3632 (2012)CrossRefGoogle Scholar
  6. 6.
    A.M. Parvanian, M. Saadatfar, M. Panjepour, A. Kingston, A.P. Sheppard, The effects of manufacturing parameters on geometrical and mechanical properties of copper foams produced by space holder technique. Mater. Des. 53, 681–690 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Tang, R. Zhou, H. Li, W. Yuan, L.S. Lu, Experimental study on the tensile strength of a sintered porous metal composite. Mater. Sci. Eng., A 607, 536–541 (2014)CrossRefGoogle Scholar
  8. 8.
    G.C. Bond, D.T. Thompson, Catalysis by gold. Catal. Rev. 413, 19–388 (1999)Google Scholar
  9. 9.
    T. You, O. Niwa, M. Tomita, S. Hirono, Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Anal. Chem. 75, 2080–2085 (2003)CrossRefGoogle Scholar
  10. 10.
    J. Weissmueller, R.N. Viswanath, D. Kramer, P. Zimmer, R. Wuerschum, H. Gleiter, Charge-induced reversible strain in a metal. Science 300, 312–315 (2003)CrossRefGoogle Scholar
  11. 11.
    S.H. Joo, S.J. Choi, L. Oh, K.J. Kwa, Z. Liu, O. Terasakl, R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001)CrossRefGoogle Scholar
  12. 12.
    L.P. Lefebvre, J. Banhart, D.C. Dunand, Reviews: porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10, 775–787 (2008)CrossRefGoogle Scholar
  13. 13.
    N. Bekoz, E. Oktay, The role of pore wall microstructure and micropores on the mechanical properties of Cu–Ni–Mo based steel foams. Mater. Sci. Eng., A 612, 387–397 (2014)CrossRefGoogle Scholar
  14. 14.
    N. Bekoz, E. Oktay, Mechanical properties of low alloy steel foams: dependency on porosity and pore size. Mater. Sci. Eng. A 576, 82–90 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Kashihara, H. Yonetani, T. Kobi, S.K. Hyun, S. Suzuki, H. Nakajima, Fabrication of lotus-type porous carbon steel via continuous zone melting and its mechanical properties. Mater. Sci. Eng., A 524, 112–118 (2009)CrossRefGoogle Scholar
  16. 16.
    A.M. Parvanian, M. Panjepour, Mechanical behavior improvement of open-pore copper foams synthesized through space holder technique. Mater. Des. 49, 834–841 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Hangai, K. Zushida, H. Fujii, R. Ueji, O. Kuwazuru, N. Yoshikawa, Friction powder compaction process for fabricating open-celled Cu foam by sintering-dissolution process route using NaCl space holder. Mater. Sci. Eng. A 585, 468–474 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Hakamada, Y. Asao, T. Kuromura, Y. Chen, H. Kusuda, M. Mabuchi, Density dependence of the compressive properties of porous copper over a wide density range. Acta Mater. 55, 2291–2299 (2007)CrossRefGoogle Scholar
  19. 19.
    J.C. Qiao, Z.P. Xi, H.P. Tang, J.Y. Wang, J.L. Zhu, Compressive property and energy absorption of porous sintered fiber metals. Mater. Trans. 49, 2919–2921 (2008)CrossRefGoogle Scholar
  20. 20.
    N. Tuncer, G. Arslan, Designing compressive properties of titanium foams. J. Mater. Sci. 44, 1477–1484 (2009)CrossRefGoogle Scholar
  21. 21.
    Y.C.K. Chen-Wiegart, S. Wang, I. McNulty, D.C. Dunand, Effect of Ag-Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation. Acta Mater. 61, 5561–5570 (2013)CrossRefGoogle Scholar
  22. 22.
    C.C. Zhao, Z. Qi, X.G. Wang, Z.H. Zhang, Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg–Cu alloys. Corros. Sci. 51, 2120–2125 (2009)CrossRefGoogle Scholar
  23. 23.
    Z. Qi, C.C. Zhao, X.G. Wang, J.K. Lin, W. Shao, Z.H. Zhang, X.F. Bian, Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al–Cu Alloys. J. Phys. Chem. C 113, 6694–6698 (2009)CrossRefGoogle Scholar
  24. 24.
    J.F. Huang, I.W. Sun, Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au–Zn in an ionic liquid, and the self-assembly of l-cysteine monolayers. Adv. Funct. Mater. 15, 989–994 (2005)CrossRefGoogle Scholar
  25. 25.
    L.J. Zou, F. Chen, X. Chen, Y.J. Lin, Q. Shen, E.J. Lavernia, L.M. Zhang, Fabrication and mechanical behavior of porous Cu via chemical de-alloying of Cu25Fe75 alloys. J. Alloys Compd. 689, 6–14 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001)CrossRefGoogle Scholar
  27. 27.
    E. Zhang, B. Wang, On the compressive behaviour of sintered porous coppers with low to medium porosities - Part I: experimental study. Int. J. Mech. Sci. 47, 744–756 (2005)CrossRefGoogle Scholar
  28. 28.
    A.F. Bastawros, H. Bart-Smith, A.G. Evans, Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. J. Mech. Phys. Solids 48, 301–322 (2000)CrossRefGoogle Scholar
  29. 29.
    A.E. Markaki, T.W. Clyne, The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams. Acta Mater. 49, 1677–1686 (2001)CrossRefGoogle Scholar
  30. 30.
    D. Farkas, A. Caro, E. Bringa, D. Crowson, Mechanical response of nanoporous gold. Acta Mater. 61, 3249–3256 (2013)CrossRefGoogle Scholar
  31. 31.
    K.A. Erk, D.C. Dunand, K.R. Shull, Titanium with controllable pore fractions by thermoreversible gelcasting of TiH2. Acta Mater. 56, 5147–5157 (2008)CrossRefGoogle Scholar
  32. 32.
    A.C. Kaya, C. Fleck, Deformation behavior of open-cell stainless steel foams. Mater. Sci. Eng. A 615, 447–456 (2014)CrossRefGoogle Scholar
  33. 33.
    G. Stephani, O. Andersen, H. Göhler, C. Kostmann, K. Kümmel, P. Quadbeck, P.N.M. Quadbeck, S.T. Reinfried, U. Waag, Iron based cellular structures—status and prospects. Adv. Eng. Mater. 8, 847–852 (2006)CrossRefGoogle Scholar
  34. 34.
    P. Quadbeck, G. Stephani, K. Kümmel, J. Adler, G. Standke, Synthesis and properties of open-celled metal foams. Mater. Sci. Forum 534(536), 1005–1008 (2007)CrossRefGoogle Scholar
  35. 35.
    L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties (Cambridge University Press, Cambridge, 1997)CrossRefGoogle Scholar
  36. 36.
    Y. Yamada, C.E. Wen, K. Shimojima, H. Hosokawa, Y. Chino, M. Mabuchi, Compressive deformation characteristics of open-cell Mg alloys with controlled cell structure. Mater. Trans. 43, 1298–1305 (2002)CrossRefGoogle Scholar
  37. 37.
    C.X. Huang, W.P. Hu, Q.Y. Wang, C. Wang, G. Yang, Y.T. Zhu, An ideal ultrafine-grained structure for high strength and high ductility. Mater. Res. Lett. 3, 88–94 (2015)CrossRefGoogle Scholar
  38. 38.
    B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdore, Overview no. 96: evolution of fcc deformation structures in polyslip. Acta Metal Mater 40, 205–219 (1992)CrossRefGoogle Scholar
  39. 39.
    B. Bay, N. Hansen, D. Kuhlmann-Wilsdore, Deformation structures in light rolled pure aluminum. Mater. Sci. Eng. A 113, 385–397 (1989)CrossRefGoogle Scholar
  40. 40.
    J.Y. Huang, Y.T. Zhu, H. Jiang, T.C. Lowe, Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 49, 1497–1505 (2001)CrossRefGoogle Scholar
  41. 41.
    A. Rohatgi, K.S. Vecchio, G.T. Gray, The influence of stacking fault energy on the mechanical behavior of Cu and Cu–Al alloys: deformation twinning, work hardening, and dynamic recovery. Metall. Mater. Trans. A 32, 135–145 (2001)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Lijie Zou
    • 1
  • Fei Chen
    • 1
    Email author
  • Hao Wang
    • 1
  • Qiang Shen
    • 1
  • Enrique J. Lavernia
    • 2
  • Lianmeng Zhang
    • 1
  1. 1.State Key Lab of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of California IrvineIrvineUSA

Personalised recommendations