Advertisement

Metals and Materials International

, Volume 25, Issue 1, pp 117–126 | Cite as

Study on Aging Effect of Adhesion Strength Between Polyimide Film and Copper Layer

  • Seok-Bon Koo
  • Chang-Myeon Lee
  • Sang-Jun Kwon
  • Jun-Mi Jeon
  • Jin-young Hur
  • Hong-Kee LeeEmail author
Article
  • 114 Downloads

Abstract

This paper experimentally confirmed that the adhesion strength of the copper layer formed on the surface of the polyimide film by wet plating greatly changes with the aging time. The adhesion strength of the copper layer showed a rapid increase from 4 to 10 h after aging had begun and then converged to a value without a significant change. The adhesion enhancement between polyimide film and copper layer by aging is due to the interlocking effect caused by the volume expansion of copper oxide (CuO) formed in the polyimide, the increased mobility of copper particles enlarged by the decrease of impurities in the copper layer grain boundaries, and the consequent change of the crystal structure of the copper layer leading to the internal stress reduction. Such adhesion improvement can be confirmed by the progress of the cohesive failure indicating the breakdown of the polyimide film.

Keywords

Polyimide Copper Wet plating Adhesion strength 

References

  1. 1.
    G. Rabilloud, High Performance Polymers, Polyimides in Electronics (Editions Technip, Paris, 2000), pp. 89–164Google Scholar
  2. 2.
    M.K. Ghosh, K.L. Mittal, Polyimides, Fundamentals and Applications (Marcel Dekker, New York, 1996), pp. 759–814Google Scholar
  3. 3.
    A. Kumar, Manuf. Lett. 15, 122–125 (2018)CrossRefGoogle Scholar
  4. 4.
    Y.-S. Lin, H.-M. Liu, C.-L. Chen, Surf. Coat. Technol. 200, 3775–3785 (2006)CrossRefGoogle Scholar
  5. 5.
    S.H. Kim, S.W. Na, N.-E. Lee, Y.W. Nam, Y.-H. Kim, Surf. Coat. Technol. 200, 2072–2079 (2005)CrossRefGoogle Scholar
  6. 6.
    A. Ebe, E. Takahashi, Y. Iwamoto, N. Kuratani, S. Nishiyama, O. Imai, K. Ogata, Y. Setsuhara, S. Miyake, Thin Solid Films 281–282, 356–359 (1996)CrossRefGoogle Scholar
  7. 7.
    S. Ikeda, H. Yanagimoto, K. Akamatsu, H. Nawafune, Adv. Funct. Mater. 17, 889–897 (2007)CrossRefGoogle Scholar
  8. 8.
    H.K. Lee, S.H. Son, H.Y. Lee, S.B. Koo, J. Adhes. Sci. Technol. 22, 47–64 (2008)CrossRefGoogle Scholar
  9. 9.
    H.K. Yun, K. Cho, J.K. Kim, C.E. Park, S.M. Sim, S.Y. Oh, M. Park, Polymer 38, 827–834 (1997)CrossRefGoogle Scholar
  10. 10.
    T.N. Vorobyova, J. Adhes. Sci. Technol. 11, 167–182 (1997)CrossRefGoogle Scholar
  11. 11.
    Z. Wang, A. Furuya, K. Yasuda, H. Ikeda, T. Baba, M. Hagiwara, S. Toki, S. Shingubara, H. Kubota, T. Ohmi, J. Adhes. Sci. Technol. 16, 1027–1040 (2002)CrossRefGoogle Scholar
  12. 12.
    J.H. Kim, Y.G. Seol, N.E. Lee, J. Korean Phys. Soc. 51, S187–S192 (2007)CrossRefGoogle Scholar
  13. 13.
    H.W. Kim, J.H. Kim, D.J. Kim, N.-E. Lee, J. Electrochem. Soc. 156, D525–D530 (2009)CrossRefGoogle Scholar
  14. 14.
    S.J. Cho, T. Nguyen, J.H. Boo, J. Nanosci. Nanotechnol. 11, 5328–5333 (2011)CrossRefGoogle Scholar
  15. 15.
    J.H. Das, J.E. Morris, IEEE Trans. Compon. Packag. Manuf. Technol. Part B 17, 620–625 (1994)CrossRefGoogle Scholar
  16. 16.
    N. Miki, K. Tanaka, A. Takahara, T. Kajiyama, J. Vac. Sci. Technol. B 18, 313 (2000)CrossRefGoogle Scholar
  17. 17.
    S. Lagrange, S.H. Brongersma, M. Judelewicz, A. Saerens, I. Vervoort, E. Richard, R. Palmans, K. Maex, Microelectron. Eng. 50, 449–457 (2000)CrossRefGoogle Scholar
  18. 18.
    H.K. Lee, J.Y. Hur, Met. Mater. Int. 19, 821–827 (2013)CrossRefGoogle Scholar
  19. 19.
    I.S. Park et al., Mater. Sci. Eng. A 282, 137–144 (2000)CrossRefGoogle Scholar
  20. 20.
    H.N. Lee, Y.S. Han, J.H. Lee, J.Y. Hur, H.K. Lee, Mater. Trans. 54, 1040–1044 (2013)CrossRefGoogle Scholar
  21. 21.
    J.Y. Park, Y.S. Junga, J. Chob, W.K. Cho, Appl. Surf. Sci. 252, 5877–5891 (2006)CrossRefGoogle Scholar
  22. 22.
    W.J. Lee, Y.S. Lee, S.K. Rha, Y.J. Lee, K.Y. Lim, Y.D. Chung, C.N. Whang, Appl. Surf. Sci. 205, 128–136 (2003)CrossRefGoogle Scholar
  23. 23.
    D. Wolany, T. Fladung, L. Duda, J.W. Lee, T. Gantenfort, L. Wiedmann, A. Benninghoven, Surf. Interface Anal. 27, 609–617 (1999)CrossRefGoogle Scholar
  24. 24.
    O.H. Abd-Elkader, N.M. Deraz, Int. J. Electrochem. Sci. 8, 8614–8622 (2013)Google Scholar
  25. 25.
    C.S. Barrett, T.B. Massalski, Structure of Metals (Pergamon, Oxford, 1980), p. 1923Google Scholar
  26. 26.
    E. Shinada, T. Nagoshi, T.F. Mark Chang, M. Sone, Mater. Sci. Semicond. Process. 16, 633–639 (2013)CrossRefGoogle Scholar
  27. 27.
    O. Gürbüz, S. Güner, Ö. Büyükbakkal, S. Çalışkan, J. Magn. Magn. Mater. 373, 90–95 (2015)CrossRefGoogle Scholar
  28. 28.
    T. Hara, H. Toida, Y. Shimura, Electrochem. Solid State Lett. 6(7), G98–G100 (2003)CrossRefGoogle Scholar
  29. 29.
    M. Stangl, J. Acker, V. Dittel, W. Gruner, V. Hoffmann, K. Wetzig, Microelectronic Eng. 82, 189–195 (2005)CrossRefGoogle Scholar
  30. 30.
    W.B. Jang, M.B. Seo, J.C. Seo, S.G. Park, H.S. Han, Polym. Int. 57, 350–358 (2008)CrossRefGoogle Scholar
  31. 31.
    M.S. Yoon, Y.J. Park, Y.C. Joo, Thin Solid Films 408, 230–235 (2002)CrossRefGoogle Scholar
  32. 32.
    R. Huang, W. Rob, H. Ceric, T. Detzel, G. Dehm, IEEE Trans. Device Mater. Reliab. 10, 47–54 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Surface Technology R&D GroupKorea Institute of Industrial TechnologyIncheonRepublic of Korea
  2. 2.Advanced Analysis CenterKorea Institute of Science and TechnologySeoulRepublic of Korea

Personalised recommendations