Advertisement

Metals and Materials International

, Volume 25, Issue 1, pp 1–8 | Cite as

Formation and Magnetic Properties of Nanocomposites in Rapidly Solidified Fe42Ni41.7C7Si4.5B3.9P0.9 (at%) Ribbons

  • Jiyong Hwang
  • Hoseong Lee
  • Seonghoon Yi
Article
  • 98 Downloads

Abstract

A novel nanocomposite structure comprising ~ 20-nm face-centered cubic Fe50Ni50 nanocrystals embedded within an amorphous matrix has been developed directly from a liquid alloy of Fe42Ni41.7C7Si4.5B3.9P0.9 (at%) through melt-spinning. Grain growth kinetics was significantly limited by the amorphous phase formed between nanocrystals. Glass forming elements rejected from nanocrystals stabilize the amorphous phase restricting further growth of nanocrystals. The nanocomposite ribbon exhibits excellent soft magnetic properties compared to those of the conventional micron-scale microstructured Fe50Ni50 alloy known as 50 Permalloy. When the as-melt spun ribbon was heated to 600 °C, two exothermic events occurred. The formation of metastable C-rich Fe3Ni and Si- and P-rich FeNi phases at low temperatures was confirmed by detailed transmission electron microscopy analysis. The hard magnetic behaviors of these metastable phases were estimated based on the hysteresis curve analysis results obtained from a ribbon heated to 600 °C. Through proper addition of glass-forming elements to FeNi-based alloys, nanocomposites with superior soft magnetic properties were effectively fabricated for massive practical soft magnetic applications.

Keywords

Permalloy Nanocomposite Magnetic properties Rapid solidification 

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education in 2016 (No. 2016R1D1A1B03933529).

References

  1. 1.
    R.C. O’Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, 1999)Google Scholar
  2. 2.
    B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, Hoboken, 2008)CrossRefGoogle Scholar
  3. 3.
    A.A. Chlenova, A.A. Moiseev, M.S. Derevyanko, A.V. Semirov, V.N. Lepalovsky, G.V. Kurlyandskaya, Permalloy-based thin film structures: magnetic properties and the giant magnetoimpedance effect in the temperature range important for biomedical applications. Sensors 17, 1900 (2017)CrossRefGoogle Scholar
  4. 4.
    W.J. Qiang, Z.Z. Qi, H. Rui, W. Tao, L.F. Shen, Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites. Chin. Phys. B 21, 037601 (2012)CrossRefGoogle Scholar
  5. 5.
    C. Kuhrt, L. Schultz, Formation and magnetic properties of nanocrystalline mechanically alloyed Fe–Co. J. Appl. Phys. 71, 1896 (1992)CrossRefGoogle Scholar
  6. 6.
    G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)CrossRefGoogle Scholar
  7. 7.
    D. De, A. Karmakar, M.K. Bhunia, A. Bhaumik, S. Majumdar, S. Giri, Memory effects in superparamagnetic and nanocrystalline Fe50Ni50 alloy. J. Appl. Phys. 111, 033919 (2012)CrossRefGoogle Scholar
  8. 8.
    D. De, S. Majumdar, S. Giri, Magnetic properties of nanocrystalline Fe0.5Ni0.5 permalloy. AIP Conf. Proc. 1447, 337 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Baghayeri, B. Maleki, R. Zarghani, Voltammetric behavior of tiopronin on carbon paste electrode modified with nanocrystalline Fe50Ni50 alloys. Mater. Sci. Eng., C 44, 175–182 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Guittoum, A. Layadi, A. Bourzami, H. Tafat, N. Souami, S. Boutarfaia, D. Lacour, X-ray diffraction, microstructure, Mossbauer and magnetization studies of nanostructured Fe50Ni50 alloy prepared by mechanical alloying. J. Magn. Magn. Mater. 320, 1385–1392 (2008)CrossRefGoogle Scholar
  11. 11.
    R.H. Yu, L. Ren, S. Basu, K.M. Unruh, A.P. Majidi, J.Q. Xiao, Novel soft magnetic composites fabricated by electrodeposition. J. Appl. Phys. 87, 5840 (2000)CrossRefGoogle Scholar
  12. 12.
    M. Glezer, S.E. Manaenkov, I.E. Permyakova, N.A. Shurygina, Effect of nanocrystallization on the mechanical behavior of Fe–Ni-based amorphous alloys. Russ. Metall. 2011, 947–955 (2011)CrossRefGoogle Scholar
  13. 13.
    Y. Adzir, I.I. Yaacob, Nanostructured Fe50Ni50 alloy prepared by mechanical alloying: synthesis and characterization. Mater. Res. Innov. 13, 217–220 (2009)CrossRefGoogle Scholar
  14. 14.
    J.J. Suñol, A. González, M.T. Clavaguera-Mora, N. Clavaguera, Mechanically induced thermal changes in amorphous metallic melt-spun alloys. Mater. Lett. 57, 4222–4226 (2003)CrossRefGoogle Scholar
  15. 15.
    C.-W. Yang, D.B. Williams, J.I. Goldstein, A revision of the Fe–Ni phase diagram at low temperature (< 400°). J. Phase Equilib. 17, 522–531 (1996)CrossRefGoogle Scholar
  16. 16.
    T. Pradell, J.J. Suñol, N. Clavaguera, M.T. Clavaguera-Mora, Crystallization behavior of Fe40Ni40SixP20−x (x = 6, 10, 14) amorphous alloys. J. Non Cryst. Solids 276, 113–121 (2000)CrossRefGoogle Scholar
  17. 17.
    J.L. Elechiguerra, J. Reyes-Gasga, M.J. Yacaman, The role of twinning in shape evolution of anisotropic noble metal nanostructures. J. Mater. Chem. 16, 3906–3919 (2006)CrossRefGoogle Scholar
  18. 18.
    G. Abrosimova, A. Aronin, Amorphous and Nanocrystalline Metallic Alloys (InTech, Rijeka, 2016)CrossRefGoogle Scholar
  19. 19.
    M.Y. Gutkin, I.A. Ovid’ko, Physical Mechanics of Deformed Nanostructures, 1st edn. (Yanus, Saint-Petersburg, 2003)Google Scholar
  20. 20.
    N.Y. Pandya, A.D. Mevada, P.N. Gajjar, Lattice dynamical and thermodynamic properties of FeNi3, FeNi and Fe3Ni invar materials. Comput. Mater. Sci. 123, 287–295 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, Phase stability in the Fe–Ni system: investigation by first-principles calculations and atomistic simulations. Acta Mater. 53, 4029–4041 (2005)CrossRefGoogle Scholar
  22. 22.
    Z. Surowieca, B. Bierska-Piechb, M. Wiertela, M. Budzynski, J. Goworek, Magnetic nanoparticles in MCM-41 type mesoporous silica. Acta Phys. Pol., A 114, 1605–1613 (2008)CrossRefGoogle Scholar
  23. 23.
    H.N. Frasea, R.D. Shullb, L.-B. Honga, T.A. Stephensa, Z.-Q. Gaoa, B. Fultza, Soft magnetic properties of nanocrystalline Ni3Fe and Fe75Al12.5Ge12.5. Nanostruct. Mater. 11, 987–993 (1999)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Materials Science and Metallurgical EngineeringKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations