Metals and Materials International

, Volume 25, Issue 1, pp 168–178 | Cite as

Influence of Al Addition Upon the Microstructure and Mechanical Property of Dual-Phase 9Cr-ODS Steels

  • Xiaosheng Zhou
  • Zongqing MaEmail author
  • Liming Yu
  • Yuan Huang
  • Huijun Li
  • Yongchang LiuEmail author


With Al addition, dual-phase oxide dispersion strengthened (ODS) steels consisting of martensite and ferrite are fabricated by spark plasma sintering. It is found that Al addition has a negligible effect on martensite lath size, while the amount and size of ferrite grains are related to the Al content. M23C6 (M = Fe, Cr) carbides have been identified within the ferrite grains or along ferrite boundaries. With increasing Al concentration, more fine Y–Al–O oxide nanoparticles are formed. Upon annealing treatment, homogeneous and refined distribution of ferrite grains is obtained, which may involve the particle-stimulated nucleation of recrystallization caused by the large sized M23C6. As Al is increased from 0.05 to 0.1 wt%, the tensile strength of the annealed steel is decreased, as well as its ductility. For the annealed 9Cr-ODS steel containing 0.1 wt% Al, in tensile loading the large sized M23C6 along ferrite boundaries would facilitate the cracking along boundaries between the hard annealed ferrite and soft annealed martensite, producing the mixed fracture of dimple and intergranular fracture.


Oxide nanoparticle Al addition Carbides Particle-stimulated nucleation 



The authors are grateful to the China National Funds for Distinguished Young Scientists (Granted No. 51325401), the National Natural Science Foundation of China (Granted Nos. 51474156 and U1660201), the National Magnetic Confinement Fusion Energy Research Program (Granted No. 2014GB125006) for grant and financial support.


  1. 1.
    T.K. Kim, S. Noh, S.H. Kang, J.J. Park, H.J. Jin, M.K. Lee, J. Jang, C.K. Rhee, Nucl. Eng. Technol. 48, 572–594 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Ukai, M. Fujiwara, J. Nucl. Mater. 307, 749–757 (2002)CrossRefGoogle Scholar
  3. 3.
    X. Zhou, C. Liu, L. Yu, Y. Liu, H. Li, J. Mater. Sci. Technol. 31, 235–242 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Zhou, Y. Liu, X. Zhou, C. Liu, J. Yu, Y. Huang, H. Li, W. Li, J. Mater. Sci. Technol. 33, 1448–1456 (2017)CrossRefGoogle Scholar
  5. 5.
    I.S. Kim, B.Y. Choi, Met. Mater. Int. 8, 265–270 (2002)CrossRefGoogle Scholar
  6. 6.
    C. Capdevila, I. Toda-Caraballo, G. Pimentel, J. Chao, Met. Mater. Int. 18, 799–804 (2012)CrossRefGoogle Scholar
  7. 7.
    G.R. Odette, M.J. Alinger, B.D. Wirth, Annu. Rev. Mater. Res. 38, 471–503 (2008)CrossRefGoogle Scholar
  8. 8.
    H. Xu, Z. Lu, S. Ukai, N. Oono, C. Liu, J. Alloys Compd. 693, 177–187 (2017)CrossRefGoogle Scholar
  9. 9.
    T. Yamashiro, S. Ukai, N. Oono, S. Ohtsuka, T. Kaito, J. Nucl. Mater. 472, 247–251 (2016)CrossRefGoogle Scholar
  10. 10.
    M.S. El-Genk, J.-M. Tournier, J. Nucl. Mater. 340, 93–112 (2005)CrossRefGoogle Scholar
  11. 11.
    S. Ukai, S. Ohtsuka, Energy Mater. 2, 26–35 (2007)CrossRefGoogle Scholar
  12. 12.
    T. Tanno, S. Ohtsuka, Y. Yano, T. Kaito, Y. Oba, M. Ohnuma, S. Koyama, K. Tanaka, J. Nucl. Mater. 440, 568–574 (2013)CrossRefGoogle Scholar
  13. 13.
    S. Ohtsuka, T. Kaito, T. Tanno, Y. Yano, S. Koyama, K. Tanaka, J. Nucl. Mater. 442, S89–S94 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, S. Ohnuki, Mater. Sci. Eng., A 510, 115–120 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Yamamoto, S. Ukai, S. Hayashi, T. Kaito, S. Ohtsuka, Mater. Sci. Eng., A 527, 4418–4423 (2010)CrossRefGoogle Scholar
  16. 16.
    R. Miyata, S. Ukai, X. Wu, N. Oono, S. Hayashi, S. Ohtsuka, T. Kaito, J. Nucl. Mater. 442, S138–S141 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Ohtsuka, S. Ukai, M. Fujiwara, J. Nucl. Mater. 351, 241–246 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Ohtsuka, S. Ukai, H. Sakasegawa, M. Fujiwara, T. Kaito, T. Narita, J. Nucl. Mater. 367, 160–165 (2007)CrossRefGoogle Scholar
  19. 19.
    H. Xu, Z. Lu, S. Ukai, N. Oono, C. Liu, J. Alloys Compd. 693, 177–187 (2017)CrossRefGoogle Scholar
  20. 20.
    G. Zhang, Z. Zhou, K. Mo, Y. Miao, S. Li, X. Liu, M. Wang, J.-S. Park, J. Almer, J.F. Stubbins, Mater. Design 98, 61–67 (2016)CrossRefGoogle Scholar
  21. 21.
    K.A. Unocic, B.A. Pint, D.T. Hoelzer, J. Mater. Sci. 51, 9190–9206 (2016)CrossRefGoogle Scholar
  22. 22.
    A.J. London, S. Santra, S. Amirthapandian, B.K. Panigrahi, R.M. Sarguna, S. Balaji, R. Vijay, C.S. Sundar, S. Lozano-Perez, C.R.M. Grovenor, Acta Mater. 97, 223–233 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Xu, Z. Lu, D. Wang, C. Liu, Nucl. Eng. Technol. 49, 178–188 (2017)CrossRefGoogle Scholar
  24. 24.
    P. Dou, A. Kimura, R. Kasada, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, J. Nucl. Mater. 442, S95–S100 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Ohtsuka, T. Kaito, M. Inoue, T. Asayama, S.W. Kim, S. Ukai, T. Narita, H. Sakasegawa, J. Nucl. Mater. 386, 479–482 (2009)CrossRefGoogle Scholar
  26. 26.
    H. Oka, T. Tanno, S. Ohtsuka, Y. Yano, T. Uwaba, T. Kaito, M. Ohnuma, Nucl. Mater. Energy 9, 346–352 (2016)CrossRefGoogle Scholar
  27. 27.
    E. Mittemeijer, Fundamentals of materials science: the microstructure–property relationship using metals as model systems (Springer, Heidelberg, 2010)Google Scholar
  28. 28.
    X. Zhou, Y. Liu, L. Yu, Z. Ma, Q. Guo, Y. Huang, H. Li, Mater. Des. 132, 158–169 (2017)CrossRefGoogle Scholar
  29. 29.
    W.C. Leslie, G.C. Rauch, Metall. Mater. Trans. A 9, 343–349 (1978)CrossRefGoogle Scholar
  30. 30.
    H. Xue, T.N. Baker, Mater. Sci. Technol. 9, 424–429 (1993)CrossRefGoogle Scholar
  31. 31.
    G. Zhang, Z. Zhou, K. Mo, P. Wang, Y. Miao, S. Li, M. Wang, X. Liu, M. Gong, J. Almer, J.F. Stubbins, J. Alloys Compd. 648, 223–228 (2015)CrossRefGoogle Scholar
  32. 32.
    L. Wen, X. Sun, Z. Xiu, S. Chen, C.-T. Tsai, J. Eur. Ceram. Soc. 24, 2681–2688 (2004)CrossRefGoogle Scholar
  33. 33.
    F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena (Elsevier, Oxford, 2004)Google Scholar
  34. 34.
    J. Konrad, S. Zaefferer, D. Raabe, Acta Mater. 54, 1369–1380 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations