Microstructure and Mechanical Properties of Laser Welded Joints of DZ125L and IN718 Nickel Base Superalloys

Article
  • 54 Downloads

Abstract

The microstructure and mechanical properties of the laser welded joint of DZ125L and IN718 nickel base superalloys were investigated. The results show that the fusion zone (FZ) mainly consists of fine dendrite structure with fine γ′, Laves phases and MC carbides inhomogeneously distributed. The high welding temperature induces the partial dissolution of γ′ in the heat-affected zone (HAZ) of DZ125L and liquation of grain boundaries in both of the HAZs. After post-weld heat treatment (PWHT), fine γ″ and γ′ phases precipitate in the FZ, IN718 HAZ and IN718 base metal (BM), and fine γ′ precipitate in the γ channel of the HAZ and BM of DZ125L. With tensile testing, the joints after PWHT show higher strengths than that of the weaker DZ125L alloy. Plastic deformation mainly concentrates in the weaker DZ125L and the joint finally fails in the DZ125L BM.

Keywords

Laser welding Nickel base superalloy Post-weld heat treatment Microhardness Tensile properties 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51571052 and U1708253), the Science and Technology Major Project (2017-VI-0002), and the Fundamental Research Funds for the Central Universities (N160204004).

References

  1. 1.
    J. Zhang, D. Zhu, Z. Xu, K. Zhang, J. Liu, N. Qu, D. Zhu, J. Mater. Process. Technol. 231, 301–311 (2016)CrossRefGoogle Scholar
  2. 2.
    I. Gurrappa, I.V.S. Yashwanth, J.S. Burnell-Gray, Metall. Mater. Trans. A 44, 5270–5280 (2013)CrossRefGoogle Scholar
  3. 3.
    D. Dye, O. Hunziker, R.C. Reed, Acta Mater. 49, 683–697 (2001)CrossRefGoogle Scholar
  4. 4.
    M.B. Henderson, D. Arrell, R. Larsson, M. Heobel, G. Marchant, Sci. Technol. Weld. Join. 9, 13–21 (2013)CrossRefGoogle Scholar
  5. 5.
    Y. Ahn, B. Yoon, H. Kim, C. Lee, Met. Mater. Int. 8, 469–477 (2002)CrossRefGoogle Scholar
  6. 6.
    H.N. Moosavy, M.R. Aboutalebi, S.H. Seyedein, C. Mapelli, Mater. Charact. 82, 41–49 (2013)CrossRefGoogle Scholar
  7. 7.
    R.K. Sidhu, O.A. Ojo, N.L. Richards, M.C. Chaturvedi, Sci. Technol. Weld. Join. 14, 125–131 (2009)CrossRefGoogle Scholar
  8. 8.
    R. Kayacan, R. Varol, O. Kimilli, Mater. Res. Bull. 39, 2171–2186 (2004)CrossRefGoogle Scholar
  9. 9.
    X. Cao, B. Rivaux, M. Jahazi, J. Cuddy, A. Birur, J. Mater. Sci. 44, 4557–4571 (2009)CrossRefGoogle Scholar
  10. 10.
    G. Çam, M. Koçak, Int. Mater. Rev. 43, 1–44 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.L. Hu, X. Lin, K. Song, X.Y. Jiang, H.O. Yang, W.D. Huang, Opt. Laser Technol. 86, 1–7 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Xiao, S.M. Li, W.J. Xiao, Y.Q. Li, L.M. Cha, J. Mazumder, L.J. Song, Mater. Lett. 188, 260–262 (2017)CrossRefGoogle Scholar
  13. 13.
    T. Soysal, S. Kou, D. Tat, T. Pasang, Acta Mater. 110, 149–160 (2016)CrossRefGoogle Scholar
  14. 14.
    K.R. Vishwakarma, N.L. Richards, M.C. Chaturvedi, Mater. Sci. Eng. A 480, 517–528 (2008)CrossRefGoogle Scholar
  15. 15.
    L.O. Osoba, R.G. Ding, O.A. Ojo, Mater. Charact. 65, 93–99 (2012)CrossRefGoogle Scholar
  16. 16.
    S.G.K. Manikandan, D. Sivakumar, K. Prasad Rao, M. Kamaraj, Mater. Charact. 100, 192–206 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Pang, G. Yu, H.H. Wang, C.Y. Zheng, J. Mater. Process. Technol. 207, 271–275 (2008)CrossRefGoogle Scholar
  18. 18.
    P.F. Fu, Z.Y. Mao, J. Lin, X. Liu, C.J. Zuo, H.Y. Xu, Vacuum 102, 54–62 (2014)CrossRefGoogle Scholar
  19. 19.
    J.N. DuPont, J.C. Lippold, S.D. Kiser, Solid-solution strengthened Ni-base alloys. In: Welding Metallurgy and Weldability of Nickel-Base Alloys (Wiley, Hoboken, New Jersey, 2009), pp. 47–156CrossRefGoogle Scholar
  20. 20.
    L. Wang, Y. Wang, Y. Liu, X. Song, X. Lü, B. Zhang, Int. J. Miner. Metall. Mater. 20, 861–866 (2013)CrossRefGoogle Scholar
  21. 21.
    I.J. Moore, M.G. Burke, E.J. Palmiere, Acta Mater. 119, 157–166 (2016)CrossRefGoogle Scholar
  22. 22.
    C. Slama, C. Servant, G. Cizeron, J. Mater. Res. 12, 2298–2316 (1997)CrossRefGoogle Scholar
  23. 23.
    R.A. Branun, F.J. Radavich, P.C. Stinner, in International symposium on the metallurgy and applications of superalloy 718, ed. by E.A. Loria, (Minerals, Metals and Materials Society, Warrendale, PA, 1989), pp. 623–629Google Scholar
  24. 24.
    A. Chamanfar, M. Jahazi, J. Cormier, Metall. Mater. Trans. A 46, 1639–1669 (2015)CrossRefGoogle Scholar
  25. 25.
    N. Lun, D.C. Saha, A. Macwan, H. Pan, L. Wang, F. Goodwin, Y. Zhou, Mater. Des. 131, 450–459 (2017)CrossRefGoogle Scholar
  26. 26.
    D. Shi, C. Dong, X. Yang, Mater. Des. 45, 663–673 (2013)CrossRefGoogle Scholar
  27. 27.
    H.X. Xie, C.Y. Wang, T. Yu, J. Mater. Res. 23, 1597–1603 (2008)CrossRefGoogle Scholar
  28. 28.
    O.A. Ojo, N.L. Richards, M.C. Chaturvedi, Metall. Mater. Trans. A 37, 421–433 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations