Advertisement

Metals and Materials International

, Volume 25, Issue 3, pp 705–712 | Cite as

Influence of Strain Induced Martensite Formation of Austenitic Stainless Steel on Wear Properties

  • Yoon-Seok LeeEmail author
  • Kazuki Ishikawa
  • Mitsuhiro Okayasu
Article
  • 97 Downloads

Abstract

In this study, the wear characteristics and behaviors of both AISI304 and AISI316 austenitic stainless steels were evaluated under the different rotation speeds, using block-on-ring wear testing machine. From the microstructure analysis, at the first, the transition of strain induced-martensite was observed in wear-affected region of both AISI304 and AISI316. It is considered that the interfacial friction stress between test block and ring may trigger the phase transformation of meta-stable γ-fcc to ε/α′ martensite. Moreover, it is also observed that the amount of martensite increases with increasing rotation speed for both AISI304 and AISI316. The thickness of transformed martensite was deeper in AISI304, compared to AISI316 at all rotation speed. It can be explained by that the existence of molybdenum in AISI316 increases stacking fault energy, which can retard nucleation and growth of strain induced-martensite. Furthermore, reverse transformation was also detected at subsurface layer of both AISI304 and AISI316.

Keywords

AISI304 AISI316 Martensitic transformation Austenite Reverse transformation Wear 

References

  1. 1.
    X. Wei, M. Hua, Z. Xue, Z. Gao, J. Li, Wear 267, 1386–1392 (2009)CrossRefGoogle Scholar
  2. 2.
    A.J. McEvily, J.L.G. Velazquez, Metall. Trans. A 23(8), 2211–2221 (1992)CrossRefGoogle Scholar
  3. 3.
    H.C. Fiedler, Trans. ASM 47, 267–290 (1955)Google Scholar
  4. 4.
    J.-Y. Choi, W. Jin, Scr. Mater. 36(1), 99–104 (1997)CrossRefGoogle Scholar
  5. 5.
    K. Hokkirigawa, K. Kato, Tribol. Int. 21(1), 51–57 (1988)CrossRefGoogle Scholar
  6. 6.
    A. Leyland, A. Matthews, Wear 246, 1–11 (2000)CrossRefGoogle Scholar
  7. 7.
    A. Leyland, A. Matthews, Surf. Coat. Technol. 177, 317–324 (2004)CrossRefGoogle Scholar
  8. 8.
    W. Ni, Y.-T. Cheng, M.J. Lukitsch, A.M. Weiner, L.C. Lev, D.S. Grummon, Appl. Phys. Lett. 85, 4028–4030 (2004)CrossRefGoogle Scholar
  9. 9.
    N.S.M. El-Tayeb, T.C. Yap, P.V. Brevern, J. Eng. Tribol. 224, 395–409 (2010)Google Scholar
  10. 10.
    L. Yingjie, B. Xingui, C. Keqiang, Tribol. Int. 18(2), 107–111 (1985)CrossRefGoogle Scholar
  11. 11.
    N.P. Suh, Wear 44, 1–16 (1977)CrossRefGoogle Scholar
  12. 12.
    S. Wilson, A.T. Alpas, Wear 225–229, 440–449 (1999)CrossRefGoogle Scholar
  13. 13.
    J. Zhang, A.T. Alpas, Mater. Sci. Eng. A 160, 25–35 (1993)CrossRefGoogle Scholar
  14. 14.
    E. Rabinowicz, Friction and wear of materials, 2nd edn. (Wiley, New York, 1995)Google Scholar
  15. 15.
    J. Talonen, H. Hänninen, Acta Mater. 55, 6108–6118 (2007)CrossRefGoogle Scholar
  16. 16.
    R.E. Schramm, R.P. Reed, Metall. Trans. A 6A, 1345–1351 (1975)CrossRefGoogle Scholar
  17. 17.
    G.S. Sun, L.X. Du, J. Hu, H. Xie, H.Y. Wu, R.D.K. Misra, Mater. Char. 110, 228–235 (2015)CrossRefGoogle Scholar
  18. 18.
    G.L. Brollo, P.R. Mei, REM Rev. Esc. Minas 66(2), 221–225 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, H.J. Frecht, Acta Mater. 54, 1659–1669 (2006)CrossRefGoogle Scholar
  20. 20.
    A.F. Padilha, R.L. Plaut, P.R. Rios, ISIJ Int. 43, 135–143 (2003)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan

Personalised recommendations